文章编号:1671-4598(2025)09-0357-08

DOI: 10. 16526/j. cnki. 11-4762/tp. 2025. 09. 043

中图分类号:TP306

文献标识码:A

基于危机管理 4R 理论的航天地面装备应急 管理能力评价指标构建方法

我凯朝,孝际超,赵丹玲,姜 江

(国防科技大学系统工程学院,长沙 410073)

摘要: 航天地面装备应急管理能力是航天地面站装备管理工作的重要支撑,对保障航天任务顺利进行影响重大,目前航天地面装备应急管理能力评价指标体系设计缺乏深入的研究;针对当前评价指标片面单一问题,为评价装备应急管理全过程能力水平,以危机管理 4R 理论为基础,从缩减、预备、反应、恢复四个阶段深入分析装备应急管理能力需求,应用德尔菲法构建航天地面装备应急管理能力评价指标体系,运用层次分析法计算每个指标权重,最后给出装备应急管理能力建设的意见建议;研究成果也可为其他大型装备应急管理能力评价提供借鉴和参考。

关键词: 4R 理论; 航天装备; 应急管理; 指标体系; 德尔菲法; 层次分析法

Construction Method of Emergency Management Capability Evaluation Indicators for Aerospace Ground Equipment Based on the Crisis Management 4R Theory

ZHANG Kaichao, LI Jichao, ZHAO Danling, JIANG Jiang

(College of Systems Engineering, National University of Defense Technology, Changsha 410073, China)

Abstract: Emergency management capability serves as an important support for the management of aerospace ground equipment, which has a significant influence on ensuring the success of space tasks. Currently, there is a lack of in-depth research on the evaluation index for emergency management of space ground equipment. To address the issue of a single assessment criteria, in order to assess the comprehensive capability of equipment emergency management during the entire process, based on the 4R theory of crisis management, this paper makes an in-depth analysis of the requirements for equipment emergency management capability from four stages: reduction, readiness, response, and recovery The Delphi method is used to construct an evaluation indicators for aerospace ground equipment emergency management capability, with the analytic hierarchy process (AHP) applied to calculate the weight of each indicator. Finally, some suggestions for building the emergency management capability of equipment are provided. Relevant results can also provide a reference and guidance for evaluating the emergency management capability of other large-scale equipment.

Keywords: 4R theory; aerospace ground equipment; emergency management; index system; Delphi method; AHP

0 引言

航天地面装备是保障航天任务顺利实施的关键基础 设施,在航天器安全运行、天地信息交互等工作中发挥 着不可替代的作用,确保航天地面装备的高可靠性和长 期稳定运行,对圆满完成航天任务具有重要意义。

航天地面装备本身具有高新技术密集、系统构成复杂、运行环境恶劣等特点,容易因自然灾害、设备故

障、人为失误等因素影响导致突发应急事件,给任务顺利执行造成影响,具备较强的装备应急管理能力一直是航天地面站建设的重要目标之一。传统上以装备异常处置结果好坏作为应急处置能力评判依据的做法不够客观,导致管理人员无法清晰识别自身问题所在,难以采取针对性对策措施快速提升装备应急管理能力。如何设计一个合理、准确的航天地面装备应急管理能力评价指标体系,已成为航天地面站管理工作的重要任务。

收稿日期:2025-07-05; 修回日期:2025-08-01。

作者简介:张凯朝(1990-),男,硕士,工程师。

引用格式:张凯朝,李际超,赵丹玲,等. 基于危机管理 4R 理论的航天地面装备应急管理能力评价指标构建方法[J]. 计算机测量与控制,2025,33(9):357-364.

在应急能力评估方面,刘云熹[1]等构建了包含应急 管理 4 阶段的城市灾害事故应急能力评估指标体系,包 括预测与应急准备、监测与预警、应急处置与救援、恢 复与重建4个方面;秦丽[2]等通过筛选溢油应急能力评 估关键因子,建立了海上溢油应急能力评估指标体系, 设置预报预警能力、资源保障能力、现场处置能力3个 一级指标以及风险识别能力、现场指挥能力、事态评估 能力等 18 个二级指标,并利用层次分析法计算给出指 标权重; 陈鹏冲[3]等基于大面积停电应急预案构建应急 能力评估指标体系,形成预防准备、监测预警、处置救 援、评估重建4个一级指标以及应急预案演练、风险源 识别、应急资源整合、恢复计划等三级指标,结合主 观、客观考虑利用层次分析法和熵权法确定指标综合权 重。在装备维修能力评估方面,何鹏[4]等建立了军民融 合陆军装备维修保障能力评估指标体系,设计维修设备 满足率、维修设施满足率、维修器材满足率以及政策法 规、组织管理等评价指标,提出基于云模型的军民融合 陆军装备维修保障体系能力评估方法;董伟佳[5]等区分 人员保障能力、备件库保障能力、机构保障能力构建水 下装备维修保障评估指标体系,并对评估模型开展研 究,为装备维修保障综合评估提供一个新的方法;郭金 茂[6]等提出一种"任务一任务需求一能力指标"的装备 维修保障能力评价指标体系构建方法,设计了故障诊断 能力、装备修理速度、器材库存率等评价指标。上述相 关研究形成的评价体系及指标设计方法,可以为本研究 指标体系的设计提供指导和借鉴。但是,目前的研究大 多集中在政府应急管理、公共安全管理等领域,装备领 域也多是针对装备自身故障修复能力的评估,尚未形成 明确、可参考的以航天地面站为研究对象,涵盖装备异 常应急管理工作全流程的能力评价指标体系。

综上所述,本文从危机管理的视角研究航天地面装备应急管理工作全流程,通过德尔菲法和层次分析法论证设计航天地面装备应急管理能力评价指标体系,解决航天地面装备应急管理能力评估不够客观、全面、准确的问题。

1 危机管理 4R 理论概述

4R 理论是由美国危机管理大师罗伯特·希斯在其著作《危机管理》中提出的,其将危机管理过程划分为缩减力、预备力、反应力和恢复力四个阶段,基本囊括了危机管理工作的全过程^[7]。作为危机管理领域的经典理论,该理论为航天地面装备应急管理能力评价指标的构建提供了科学的理论框架。

1.1 危机缩减

最好的危机管理是提前消除有可能导致危机的隐 患,从源头上防止危机形成与爆发。缩减阶段主要工作 是提高组织及个体的危机防范意识,通过危险源分析、风险识别评估、资源优化等措施,尽可能降低危机发生的概率或减少危机影响,包括提高组织的危机意识、完善危机预防机制、降低组织脆弱性等工作。在实践中,缩减预防工作是一个需要长期投入的活动,很难在短期内看到明显的产出效果,且可能会占用大量人力、物力和组织资源,故而往往容易被忽视。

1.2 危机预备

危机预备就是为可能到来的危机做好应对准备工作,危机预备的水平一定程度上决定着突发事件发生后应急处置工作的质量和效率,危机预备的越充分,危机响应的越有效。预备阶段强调通过组建危机应对团队、明确任务分工、强化组织协调、储备必要应急物资、制定应急预案与实施演练等举措,提升危机防范和预警能力,确保危机一旦发生能快速、有效应对。

1.3 危机反应

尽管采取有关措施办法并进行了积极的准备,但并不意味着能完全避免危机事件的发生。当危机来临时,需要组织和成员采取恰当的行动与策略,准确的予以回应,降低危机事件对组织、个人和环境的损害程度。反应阶段重点工作在于危机事件发生后,及时收集分析危机信息,迅速依案启动应急响应并制定应急措施,加强现场指挥,采取多种措施、协调多方资源,控制和减轻危机事件产生的不利影响。

1.4 危机恢复

危机恢复是危机应对过程中转危为安的关键环节,包括两方面工作,一是在危机事件得到初步控制后,着手后续形象恢复与提升,包括修复受损设备设施,恢复正常的生产生活与服务秩序等;二是危机应对结束后的总结与学习,及时总结经验教训,通过调查、反思,为后续危机管理工作提供经验与支持、制定改进措施,避免重蹈覆辙^[8]。

我们可以对照运用危机管理 4R 理论在不同阶段的 关注重点,以航天地面装备应急管理工作为研究对象, 建立一套完整的能力评价指标体系。

2 航天地面装备应急管理能力评价指标构建

2.1 指标体系构建原则[9]

2.1.1 全面性原则

指标选取应全面覆盖装备应急管理工作各个阶段, 从风险预警、预案制定、资源调配、应急处置、事后评估等多个维度进行考量,确保不遗漏关键要素,全面反映航天地面装备应急管理的整体能力。

2.1.2 科学性原则

指标的选取应以科学理论和实践经验为依据, 确保

能够准确、客观地反映航天地面装备应急管理能力特征,数量适中,避免过于复杂或简单。

2.1.3 可操作性原则

指标选取应考虑实际操作可行性,确保指标数据易于获取,定义清晰明确,避免模糊歧义;指标的计算方法和统计口径应统一规范,保证数据的准确性和可比性。

2.2 基于德尔菲法的指标体系构建方法

德尔菲法是一种通过多轮专家咨询来收集和整理意见的方法,适用于指标体系构建中专家经验与智慧的整合,有助于提高指标选取的准确性和可靠性。

2.2.1 初始指标构建

通过广泛查阅国内外相关学术文献、研究报告、技术标准等资料,分析影响航天地面装备应急管理能力的关键因素,总结归纳出初始指标集,其中准则层指标 4个、要素层指标 10 个、指标层指标 31 个。具体如表 1 所示。

表 1 初始指标集

要素厚	指标层		
メ ホ ル	风险识别全面性 A ₁₁		
D PS 20 30 31 4 4 4			
风险官理能力 A ₁	风险评估精准性 A12		
	风险监测实时性 A13		
74 44 44 AV A	维护方案与执行 A21		
日常维护效能 A_2	维护成本控制 A22		
	人员技能达标率 A23		
) (===	应急预案覆盖率 B ₁₁		
应急预案准备 B ₁	应急预案更新时效 B ₁₂		
	应急预案可操作性 B ₁₃		
	备件库存满足率 B ₂₁		
应急资源储备 B ₂	维修工具完好率 B ₂₂		
	备件管理规范性 B ₂₃		
	培训计划完成率 B ₃₁		
培训与演练 B ₃	人员演练参与率 B ₃₂		
	培训效果转化率 Взз		
	故障报告时间 C11		
故障响应时间 C_1	应急响应启动时间 C ₁₂		
	维修人员到位时间 C_{13}		
	故障诊断准确性 C21		
	备件调配效率 C22		
巡忌处直能力 C2	影响评估能力 C23		
	临时措施有效性 C24		
	指挥手段健全性 C31		
指挥协调能力 C3	指挥决策准确性 C32		
	外部协调能力 C ₃₃		
恢复与改进能力 D ₁	故障修复时间 D ₁₁		
	功能完整性 D ₁₂		
	经验总结及时性 D ₁₃		
	备件补充时效性 D ₂₁		
资源优化能力 D ₂	设备更新升级 D ₂₂		
	人力资源优化 D ₂₃		
	故障响应时间 C ₁ 应急处置能力 C2 指挥协调能力 C3		

2.2.2 基于德尔菲法的指标筛选

按照德尔菲法实施流程,邀请专家对初始指标的重要性、合理性等进行评价,并提出修改建议。经过几轮咨询和反馈,专家意见逐渐趋于一致,最终确定科学合理的指标体系。

1) 组建专家小组:

结合研究目的,本研究邀请了装备管理、地面站管理、系统工程及相关技术领域的专家共 20 人,组成专家小组对指标体系进行筛选和优化。专家遴选遵循以下标准:①专业领域。确保覆盖装备全寿命周期管理、地面站运行维护、信息通信、总体规划等领域方向。②实践经验。要求具有至少 8 年以上相关领域实际工作经验,熟悉行业标准与实践难点。③技术背景。专家组成员包括高校相关专业的教授/副教授、航天地面站具有相关经历的技术负责人或资深管理者。通过上述标准组建的专家小组,在专业深度、实践经验和行业覆盖面上均具有较高的权威性与代表性,为指标体系的科学筛选与优化提供了可靠保障。

本研究组建的专家小组中,学历方面,博士研究生 1人、硕士研究生 9人,本科学历 10人;职称方面,正高级职称 4人、副高级职称 9人、中级职称 7人;工作时间方面,20年以上 4人、10-20年 13人、10年以下 3人;专业领域方面,装备管理领域 10人、地面站管理领域 8人、总体规划领域 2人。

2) 调查问卷:

设计包含初步构建指标集的问卷,说明研究背景、内容和目的,介绍 4R 理论框架,并对每个指标定义进行解释。邀请专家对要素层、指标层每个指标的重要性打分,提出对指标的修改意见和补充建议。向专家发放问卷并在规定时间内回收,对回收的问卷进行数据整理和分析。

3) 专家咨询结果分析:

专家积极系数。积极系数主要反映受咨询专家对此次问卷内容的关心程度,一般用问卷回收率衡量,回收率=回收总数/发放总数。本文问卷两轮专家积极系数均为100%,说明专家对本研究的关注度和积极性高。

专家权威程度。专家权威程度用权威系数 (Cr)表示,其由两个因素决定,分别是判断依据 (Ca)和问题熟悉程度 (Cs),两者取平均值计算权威系数。当权威系数值大于 0.7 时,表明该回收数据具有统计学意义,权威系数越高说明专家组的说服性越高。经统计,本研究20 名专家对咨询表的熟悉程度系数为 0.88,判断依据系数为 0.905,得出专家权威系数为 0.892 5,表明专家权威程度较高,咨询结果相对可信。

专家协调程度。用肯德尔和谐系数 (W) 反映参与咨询专家对每层指标评估的协调程度,W 值在 0-1 之

间,越大表明专家的协调程度越好,反之则协调程度越差。同时,若肯德尔和谐系数对应的显著性检验 P 值小于 0.05,则说明专家的评分具有一致性。本文两轮调查问卷结果计算得到肯德尔和谐系数 W 和显著性检验 P 值如表 2 所示。

表 2 专家协调程度数据统计表

评测内容	协调系数 W	P 值	
第一轮要素层指标	0.600	0	
第一轮指标层指标	0.483	0	
第二轮指标层指标	0.656	0	

可以得出,两轮咨询专家协调系数值均大于 0.45, P < 0.05,表明结果可信。

变异系数。变异系数 (Cv) 表示指标标准差与平均值的比值,其计算公式为:

$$Cv_i = \frac{\partial_{i}}{M}$$

其中: ∂_i 为第i个指标的标准差, M_i 为第i个指标的算术平均值。变异系数值越小,表明专家对此指标的协调程度越高。

本第一轮专家咨询主要是向专家发放包含初选指标的问卷,要求其从重要性、合理性、独立性等方面对指标进行评分,并对补充新增指标或修改建议进行收集。本研究在筛选指标时,根据专家评分,对满足均值大于3.5、变异系数小于0.25的指标予以保留,否则予以去除;同时修改指标表述,合并重叠指标,最终形成修订版指标体系。第一轮专家咨询要素层、指标层各指标均值和变异系数统计计算情况如表3、表4所示。

表 3 第一轮咨询要素层指标统计表

指标名称	平均值	变异系数	
风险管理能力 A ₁	4.1	0.2079	
日常维护效能 A ₂	4.90	0.0628	
应急预案准备 B ₁	3.90	0.2185	
应急资源储备 B ₂	4.85	0.075 5	
培训与演练 B ₃	4.90	0.0628	
故障响应时间 C_1	4.10	0.1922	
应急处置能力 C2	4.55	0.1508	
指挥协调能力 C ₃	4.85	0.075 5	
恢复与改进能力 D ₁	3.90	0.1643	
资源优化能力 D ₂	3.90	0.2021	

根据专家咨询结果,第一轮要素层 10 个指标均值 大于 3.5,变异系数均小于 0.25,全部予以保留。

指标层中,维护成本控制、培训效果转化率2个指标平均值都小于3.5,变异系数接近或超过0.25,从指标集中删除。在讨论过程中,专家认为"功能完整性"指标涵盖不够全面,建议调整为"功能性能恢复率"。

表 4 第一轮咨询指标层指标统计表

衣 4 第一牝台间指标层指标纸片衣 ————————————————————————————————————					
指标名称	平均值	变异系数			
风险识别全面性 A11	3.70	0.198			
风险评估精准性 A ₁₂	4.85	0.075 5			
风险监测实时性 A ₁₃	4.05	0.219			
维护方案与执行 A21	4.95	0.045 2			
维护成本控制 A ₂₂	3.25	0.2618			
	4.05	0.2038			
应急预案覆盖率 B ₁₁	3.95	0.224 6			
应急预案更新时效 B ₁₂	4.20	0.1828			
应急预案可操作性 B ₁₃	4.95	0.045 2			
备件库存满足率 B ₂₁	4.95	0.045 2			
维修工具完好率 B ₂₂	4.90	0.0628			
备件管理规范性 B ₂₃	3.90	0.218 5			
培训计划完成率 B31	3.70	0.177 6			
	4.95	0.045 2			
培训效果转化率 Взз	3.30	0.242 8			
故障报告时间 C_{11}	4.55	0.1508			
应急响应启动时间 C ₁₂	4.95	0.045 2			
维修人员到位时间 C_{13}	3.85	0.211 1			
故障诊断准确性 C_{21}	4.95	0.045 2			
备件调配效率 C22	4.10	0.1922			
影响评估能力 C23	4.95	0.045 2			
临时措施有效性 C24	4.95	0.045 2			
指挥手段健全性 C31	3.85	0.227 3			
指挥决策准确性 C32	4.85	0.075 5			
外部协调能力 C33	4.80	0.085 5			
故障修复时间 D_{11}	4.10	0.1922			
功能完整性 D_{12}	4.95	0.045 2			
经验总结及时性 D ₁₃	4.85	0.100 9			
备件补充时效性 D ₂₁	3.80	0.183 1			
设备更新升级 D ₂₂	4.65	0.160 2			
人力资源优化 D23	3.85	0.211 1			

修改后要素层指标不变,指标层指标调整为29个。

对指标层指标开展第二轮专家咨询,向专家反馈首轮统计结果(指标得分、修改说明)及修订版指标体系,请专家重新评分。根据专家打分情况,修改完善后最终确定指标体系。根据统计结果,29个指标平均值均大于3.5,变异系数均小于0.25,全部予以保留。

最终确定指标体系如图 1 所示,各指标释义如下: 风险管理能力:风险识别全面性主要考察是否能涵

盖装备硬件故障、软件漏洞等潜在风险;风险评估精准性主要考察对风险发生概率和影响程度评估的精准度;风险监测实时性主要考察是否具备实时监测和预警能力。

日常维护效能:维护方案与执行主要考察维护方案 是否符合装备特性和实际需求、日常维护计划是否按标 准执行;人员技能达标率主要考察维护人员是否通过专 业培训和考核。

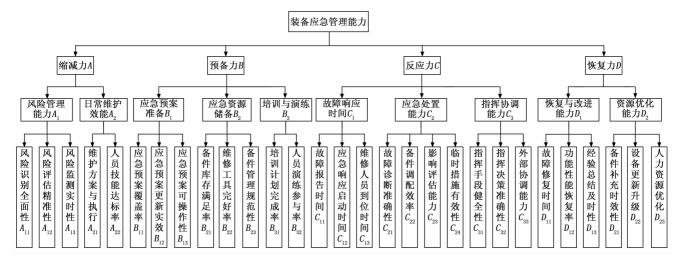


图 1 航天地面装备应急管理能力评价指标体系

应急预案准备:应急预案覆盖率主要考察是否涵盖 各类突发事件及应急处置全流程;应急预案更新时效主 要考察是否根据装备、任务变化及时修订预案的内容; 应急预案可操作性主要考察预案在实际应急处置中是否 易于执行且有效。

应急资源储备:备件库存满足率主要考察备件物资是否齐备,能否满足突发需求;应急维修工具完好率主要考察应急专用设备(如检测仪器、维修工具等)是否处于可用状态;备件管理规范性主要考察备件存储、领用、补充流程是否依规实施。

培训与演练:培训计划完成率主要考察是否按计划 开展应急管理知识和技能培训;人员演练参与率主要考 察全体员工是否按要求参加应急演练。

故障响应时间:故障报告时间主要考察从发现突发装备异常到向上级和相关部门报告的时长;应急响应启动时间主要考察从接收事件信息到启动应急预案的时长;维修人员到位时间主要考察应急维修人员抵达现场的平均响应时长。

应急处置能力:故障诊断准确性主要考察是否能够 快速、准确判断故障原因;备件调配效率主要考察备件 调配至现场的时效性;影响评估能力主要考察能否快速 评估事件对任务的影响范围;临时应对措施有效性主要 考察装备状态恢复前,采取的临时措施能否有效控制 事态。

指挥协调能力:指挥手段健全性主要考察指挥系统或工具是否完善(如通信设备、信息平台等);指挥决策准确性主要考察指挥命令是否符合实际情况,能否有效指导应急处置工作;外部协调能力主要考察能否快速协调外部专家、生产厂商等资源支持。

恢复与改进能力:故障修复时间主要考察从故障发生到装备恢复功能并运行的时长;功能性能恢复率主要

考察修复后装备是否恢复全部功能(如通信、数据处理等)、性能是否达到原设计水平;经验总结及时性主要考察是否在事件结束后及时完成总结复盘。

资源优化能力:备件补充时效性主要考察是否及时补充消耗的应急物资;设备更新升级主要考察是否对老旧或易损设备进行技术升级;人力资源优化主要考察是否调整人员配置或加强培训以提升应急能力。

3 基于层次分析法的装备应急管理能力评价指标权重确定

3.1 层次分析法 (AHP)

层次分析法通过将一个复杂的决策问题分解成多个 层次结构,从整体到局部进行层层分解,帮助研究者对 各个因素之间的重要性和优先级进行系统比较与评估, 以确定最佳的选择方案。层次分析法是一种定性分析和 定量分析相结合的决策方法,被广泛应用于管理、工 程、经济等领域。层次分析法具体计算步骤如下:

1) 建立层次结构模型:

将决策目标、因素准则和决策对象按相互关系由上 到下分解,建立层次结构。

2) 构造判断矩阵:

构造判断矩阵是将同一层次的元素进行两两比较, 并赋予一定的值,一般采用 1-9 标度来作为判断矩阵 中元素的判断尺度,如表 5 所示。

3) 聚合有效矩阵:

对 CR<0.1 的矩阵采用几何平均法生成群体聚合矩阵,将 k 个专家 (k=1,2,…,m) 形成的打分矩阵按位相乘,然后再开 m 次方,得到唯一聚合矩阵,矩阵中的元素为 m 个判断矩阵的几何平均值。

4) 层次单排序:

通过和积法、方根法等数学方法, 计算判断矩阵特征矢量和最大特征根, 得到相对权重。

耒	5 当	断铂	阵要素	比较	R F	主
11	ひ ブリ		开女糸	レレイス	$J \setminus J$	ヱҡ

序号	标度含义	比值				
1	前者元素 <i>i</i> 和后者元素 <i>j</i> 相比较 , <i>i</i> 与 <i>j</i> 同样重要	$a_{ij} = 1$				
2	前者元素 <i>i</i> 和后者元素 <i>j</i> 相比较 , <i>i</i> 比 <i>j</i> 略 微重要	$a_{ij} = 3$				
3	前者元素 <i>i</i> 和后者元素 <i>j</i> 相比较 , <i>i</i> 比 <i>j</i> 明显重要	$a_{ij} = 5$				
4	前者元素 <i>i</i> 和后者元素 <i>j</i> 相比较 , <i>i</i> 比 <i>j</i> 强 烈重要	$a_{ij} = 7$				
5	前者元素 <i>i</i> 和后者元素 <i>j</i> 相比较 , <i>i</i> 比 <i>j</i> 绝 对重要	$a_{ij} = 9$				
6	表示元素 i 与元素 j 的重要性介于上述判断之间	$a_{ij} = 2, 4, 6, 8$				
7	若元素 i 与元素 j 的相对重要程度标度为 a_{ij} ,则元素 j 与 i 的相对重要程度标度是 $a_{ji}=1/a_{ij}$	倒数				

5) 一致性检验:

考虑专家在对指标进行两两比较时有可能会出现不 一致的结论,故需要对判断矩阵进行一致性检验,保证 指标权重的合理性。一般用 CR 作为判断矩阵一致性的标准,CR 为一致性指标 CI 和平均随机一致性指标 RI 的比值。若 CR < 0.1 则表明矩阵符合要求无需修改;否则,应请专家再次修正判断矩阵,最终使计算结果 CR < 0.1。在执行时为专家提供 AHP 计算软件即时校验计算判断矩阵一致性指标 CR,对 $CR \ge 0.1$ 的矩阵当场修正,方便专家操作。

6) 层次总排序:

在层次单排序的基础上,从最高层到最低层依次计算某一层次所有因素对于目标层相对重要性的权值。

3.2 指标权重的确定

在航天地面装备应急管理能力评价指标权重计算中,邀请10位装备管理、应急管理领域专家对各指标之间的相对重要性进行打分,构造判断矩阵计算各指标的权重,并进行一致性检验,确保判断的合理性。最终各级指标权重设置如表6所示。

3.3 结果分析

从指标选取和权重计算结果来看,权重排名靠前的指标,第一是"维护方案与执行",综合权重 0.139 2,

表 6 航天地面装备应急管理能力评价指标权重汇总表

 目标层	准则层	相对权重	要素层	相对权重	指标层	相对权重	综合权重
			风险管理能力 A1	0.399 7	风险识别全面性 A11	0.2987	0.038 6
					风险评估精准性 A ₁₂	0.3622	0.046 8
	缩减力 A	0.323 1			风险监测实时性 A13	0.339 1	0.0438
				0.600 3	维护方案与执行 A ₂₁	0.717 7	0.139 2
			日常维护效能 A ₂		人员技能达标率 A ₂₂	0.282 3	0.054 8
				0.2904	应急预案覆盖率 B ₁₁	0.243 0	0.017 1
			应急预案准备 B ₁		应急预案更新时效 B ₁₂	0.1580	0.0111
					应急预案可操作性 B ₁₃	0.5990	0.042 1
	延夕 - 1 D	0.941.0		0.579 4	备件库存满足率 B ₂₁	0.4916	0.068 9
	预备力 B	0.241 8	应急资源储备 B2		维修工具完好率 B ₂₂	0.337 0	0.047 2
					备件管理规范性 B ₂₃	0.1714	0.024 0
			培训与演练 B。	0 120 2	培训计划完成率 Вз1	0.527 4	0.016 6
			培训与演练 B₃	0.130 2	人员演练参与率 B ₃₂	0.472 6	0.014 9
航天地面			故障响应时间 C_1	0.242 4	故障报告时间 C11	0.4087	0.031 3
装备应急					应急响应启动时间 C12	0.292 6	0.022 4
管理能力					维修人员到位时间 C_{13}	0.2987	0.022 9
			应急处置能力 C ₂	0.6146	故障诊断准确性 C21	0.404 0	0.078 4
	巨麻力で	0.315 6			备件调配效率 C22	0.138 1	0.026 8
	反应力 C				影响评估能力 C23	0.1051	0.020 4
					临时措施有效性 C24	0.3528	0.068 4
			指挥协调能力 C ₃	0.143 0	指挥手段健全性 C31	0.228 7	0.010 3
					指挥决策准确性 C32	0.327 2	0.014 8
					外部协调能力 C33	0.444 1	0.020 0
	恢复力 D 0		恢复与改进能力 D ₁	0.5135	故障修复时间 D ₁₁	0.2205	0.0135
					功能性能恢复率 D ₁₂	0.4608	0.028 3
		0 110 5			经验总结及时性 D_{13}	0.3187	0.019 6
		0.119 5	资源优化能力 D ₂	0.486 5	备件补充时效性 D ₂₁	0.349 4	0.020 3
					设备更新升级 D22	0.3087	0.017 9
					人力资源优化 D23	0.342 0	0.019 9

表明专家都比较看重装备日常维护工作,认为日常维护工作是装备应急管理的基础,直接影响装备稳定性,维护工作落实到位可有效降低装备管理应急事件的发生;第二是"故障诊断准确性",综合权重 0.078 4,说明精准的装备异常诊断能力至关重要,其反映出一个组织的装备故障响应效率,一定程度上决定着故障修复效果,需要着重加强培养训练;第三是"备件库存满足率",综合权重 0.068 9,说明充足、精准的备品备件储备有助于及时高效地完成装备异常应急处置任务;第四是"临时措施有效性",综合权重 0.068 4,表明灵活应对处置能力也是装备应急管理能力地重要指标,是反应力的重要体现。

此外,准则层中各维度权重由高到低依次为:缩减力、反应力、预备力、恢复力。

4 对策建议

结合上述分析结果可知,相关单位在进行装备应急管理能力建设时,可以按照"预防为主、防治结合"的原则,优先开展缩减力提升工作,重点强化装备日常维护保养的计划性和落实性,可以采用"任务周期+设备状态"双触发机制制定维护计划,根据任务预测周期安排基础维护,结合监控数据和预设阈值,自动生成紧急维护预警,确保维护计划的科学合理;建立装备维护质效追溯机制,实行"一装备一码"电子管理手段,实时记录查询装备维护、故障图谱、备件更换等情况;注重装备维护效能考核,将"装备可用率"纳入部门 KPI,将个人绩效与装备维护任务闭环率挂钩,确保维护工作落实到位,从源头上降低装备异常发生的风险。

同时,也要加强反应力与预备力的提升,运用数字化手段进一步缩短故障报告、响应启动和人员到位时间;设计开发"故障代码与处置方案"映射库,压缩诊断决策时间;部署 AI 智能诊断系统,基于装备历史故障数据训练深度学习模型,实现故障精准预判;分级建立备件库,健全备件管理制度机制,确保关键备件储备、调配的可靠性和高效性;开展不预告时间、不预设脚本的双盲演练和压力测试,增强组织和成员的危机事件临机处置能力等。

5 结束语

传统的装备异常应急管理大多关注结果如何,是否 快速恢复了装备状态,重点在于异常或故障的定位及维 修处置,很少对应急工作全流程进行讨论。本文将危机 管理理论与航天地面装备异常应急处置相结合,解决传 统单一维度片面评估航天地面装备异常处置能力的局 限,在新的视角下开展装备应急管理工作研究,探索应 急处置能力评估方法,提出了一套评价指标体系,更准 确地反映航天地面装备应急管理能力。研究结果可用于 航天地面站日常自测评、管理机构考核评估等工作,还可为其他社会活动中高科技、大型平台装备的应急处置能力评估提供借鉴和参考,推动相关领域的应急管理能力提升。

参考文献:

- [1] 刘云熹, 时德轶, 张 鹏, 等. 城市灾害事故应急能力评估指标体系构建研究[J]. 中国安全生产科学技术, 2024, 20 (1): 179-186.
- [2] 秦 丽,刘保占,王茂君.基于模糊综合评价方法的海上溢油应急能力评估技术研究 [J].海洋环境科学,2022,41 (6):910-914.
- [3] 陈鹏冲,刘 畅,葛黄徐,等.城市大面积停电应急能力评估指标探讨[J].中国安全生产科学技术,2023,19(6):5-12.
- [4] 何 鵬,王 晖,黎云兵,等. 军民融合陆军装备维修保障体系能力评估[J]. 火力与指挥控制,2021,46 (11):73-81.
- [5] 董伟佳, 禹润田. 水下装备维修保障能力评估方法研究 [J]. 电声技术, 2023, 47 (3): 23-26.
- [6] 郭金茂, 尹瀚泽, 徐玉国. 装备维修保障能力评估指标模 糊聚类分析 [J]. 兵器装备工 程学报, 2020, 41 (10): 76-80.
- [7] 罗伯特·希斯 (Robert Heath) 著; 王成等译. 危机管理 「M、北京: 中信出版社, 2004.
- [8] 孙多勇,朱桂菊,李 江. 危机管理导论 [M]. 长沙:国际科技大学出版社,2018.
- [9] 杨克巍,杨清清,郭 玙,等.海上突发事件应急方案智能辅助决策方法[M].北京:科学出版社,2024.
- [10] 乔 波,郭建兴,贾 宁,等. 基于 AHP 方法的地震监测中心站地震应急能力评价指标体系分析研究 [J]. 灾害学,2024,39 (2):172-177.
- [11] 杨世玉,刘丽艳,李 硕. 高校教师教学能力评价指标体系建构——基于德尔菲法的调查分析 [J]. 高教探索, 2021 (12): 66-73.
- [12] 黄盼盼,程 红,张迎红,等.基于4R危机管理理论构 建互联网+护理服务风险管理评价指标体系[J].护理 学报,2022,29 (9):16-20.
- [13] 侯风垒. 基于层次分析法和模糊综合评价法的应急管理能力综合评价研究[J]. 现代城市轨道交通, 2022 (9): 87-92.
- [14] 王灵芝. 航空装备通用质量特性使用评价基础 [M]. 北京: 航空工业出版社,2021.
- [15] 夏立新,翟姗姗,叶光辉,等.信息分析理论方法与应用[M].北京:科学出版社,2022.
- [16] YIN X Y, RUAN Y J, ZHANG Y Y, et al. Research on the construction of evaluation index system for equipment maintenance support capability based on AHP [J]. E3S Web of Conferences, 2021, 252; 3017.
- [17] DAI Z K, YAO C, et al. Research on estimation of e-

- quipment maintenance duration based on AHP-FIE risk analysis [J]. International Journal of Industrial and Systems Engineering, 2021, 38 (2): 223 - 238.
- [18] GUO D Y, ZHU L M, YANG G L. Prediction of ZJ17 equipment maintenance based on fuzzy analytic hierarchy process [C] //2019 International Conference on Information Technology, Electrical and Electronic Engineering (ITEEE 2019), 2019.
- [19] WU C, HU M Y, ZHANG X Y, et al. Construction of an index system of the biosafety incident response capabili-

ty for nursing staff: a delphi study [J]. Nursing Open, 2025, 12 (1): e70118.

- [20] LU M H, CHAI Q W, WEI L, et al. Development of an emergency science popularization capacity index system for nurses in China-A Delphi study [J]. Public health nursing (Boston, Mass.), 2024, 41 (6): 1.
- [21] BIKE Z, et al. Construction of equipment evaluation index system of emergency medical rescue based on Delphi method and analytic hierarchy process [J]. Ain Shams Engineering Journal, 2023, 14 (2): 101870.

(上接第350页)

控、远程驾驶、环境感知与定位、自动作业功能。原来 需要进入船舱驾驶清舱机的驾驶员,现在通过设立在码 头控制室中的无人清舱机远程交互控制平台进行清舱作 业,改变了传统的清舱作业方式,从根本上解决了人工 清舱存在安全风险的问题,极大地改善了清舱工作人员 的工作环境。

参考文献:

- [1] ZHANG M L, QI J. Conception and practice of intelligent construction of bulk terminals [J]. Port Economy, 2013 (1): 31 - 36.
- 虹,郭露露,宫 洵,等.智能时代的汽车控制 [J]. 自动化学报, 2020, 46 (7): 1313-1332.
- [3] JUANG M T. The implementation of remote monitoring for autonomous driving [C] // Japan: 4th Asia-Pacific Conference on Intelligent Robot Systems, 2019: 53 - 56.
- [4] 高洪伟, 吕贵林, 陈 涛, 等. 云控远程驾驶系统的设计 与实现[J]. 汽车文摘, 2024 (4): 1-9.
- [5] 岳远航,纪少波,刘振革,等.新能源装载机远程驾驶控 制器开发「J]. 内燃机与动力装置, 2024, 41 (4): 71 - 76.
- [6] FONG T, THORPE C, BAUR C. Advanced interfaces for vehicle teleoperation; collaborative control, sensor fusion displays, and remote driving tools [J]. Autonomous Robots, 2001, 11 (1): 77 - 85.
- [7] FONG T, CONTI F. Novel interfaces for remote driving: gesture, haptic, and PDA [J]. Mobile Robots XV & Telemanipulator & Telepresence Technologies VII, 2001, 300 -311.
- [8] FONG T, THORPE C, BAUR C. Multi-robot remote driving with collaborative control [J]. IEEE Transactions on Industrial Electronics, 2003, 50 (4): 699 - 704.
- [9] YOU K, DING L Y, ZHOU C, et al. 5G-based earthwork monitoring system for an unmanned bulldozer [J]. Automation in Construction, 2021, 131: 103891.
- [10] 邓博文,张春华,李 娟,等. 局部路径规划在无人工

- 程机械作业中的应用[J]. 兵工自动化, 2016, 35 (10): 70 - 73.
- [11] BALESTRIERI E, DAPONTE P, DE VITO L, et al. Sensors and measurements for unmanned systems: an overview [J]. Sensors, 2021, 21 (4): 1518.
- [12] Chen, Keji, Yang, et al. Hierarchical control strategy towards safe driving of autonomous vehicles [J]. Journal of intelligent & fuzzy systems: Applications in Engineering and Technology, 2018, 34 (4): 2197 - 2212.
- [13] 徐轶群,徐 弘,孟令超,等.全船无线通信系统网络 架构与可靠性研究[J]. 船舶工程, 2021, 43 (6): 85
- [14] 刘 科,许洪华. 工业无线通信可靠性研究 [J]. 计算 机仿真, 2012, 29 (12): 123-126.
- [15] LIX, CHANG D, PEN H, et al. Application of MVVM design pattern in MES [C] // Shenyang, China: 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), 2015: 1374 - 1378.
- [16] 陈 涛. MVVM 设计模式及其应用研究 [J]. 计算机与 数字工程,2014,42(10):1982-1985.
- [17] 山 寿, 郝明哲, 孙 伟. 基于数据分发服务和 WPF 技 术的试飞实时监控系统设计[J]. 计算机测量与控制, 2020, 28 (3): 119-122.
- [18] 冯 灿,刘 涛,刘亚妍. 基于 WPF 的遥测 CAS 信息 实时监控系统设计开发 [J]. 民用飞机设计与研究, 2019 (2): 6-10.
- [19] YUY, LEES. Remote driving control with real-time video streaming over wireless networks: design and evaluation [J]. IEEE Access, 2022, 10: 64920 - 64932.
- [20] GATIMU K, DHANODARAN A, JOHNSON T. et al. Experimental study of QoE improvements towards adaptive HD video streaming using flexible dual TCP-UDP streaming protocol [J]. Multimedia Systems, 2020, 26, 479 - 493.
- [21] 陈 典,郭健忠,谢 斌,等. 基于 Qt 技术的汽车显示 系统的设计与实现 [J]. 电子器件, 2019, 42 (2): 530 -534.