一种面向高动态网络的因果增强时空图预测模型
DOI:
CSTR:
作者:
作者单位:

中国电子科技集团公司第五十四研究所

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对高动态环境下网络链路质量预测的问题,提出了一种状态聚类引导的因果时空图卷积网络架构Causal-Clustered STGCN(CC-STGCN)。突破了基于形状相似性的时序状态划分、状态特异的格兰杰因果图构建,以及因果约束下的时空特征聚合等关键技术,实现了对网络运行模式的自适应感知与跨物理连接的隐性依赖捕捉。核心思想是通过K-shape聚类将连续状态划分为典型模式,并在各状态内部基于格兰杰因果检验构建有向加权因果图,以取代传统物理拓扑作为图卷积的空间先验,使特征聚合严格遵循因果路径。实验基于SynthSoM数据集,在标准场景下预测精度较最优基线提升6.7%,并在复杂场景中保持优势。

    Abstract:

    :To address the challenge of network link quality prediction in highly dynamic environments, this paper proposes a state-clustering-guided causal spatio-temporal graph convolutional network architecture named Causal-Clustered STGCN (CC-STGCN). The work makes key breakthroughs in time-series state partitioning based on shape similarity, state-specific Granger causality graph construction, and spatio-temporal feature aggregation under causal constraints, thereby achieving adaptive perception of network operation modes and capturing latent dependencies beyond physical connectivity. The core idea is to partition continuous states into typical patterns via K-shape clustering and construct directed, weighted causal graphs within each state based on Granger causality tests. These causal graphs replace the traditional physical topology as the spatial prior for graph convolution, ensuring that feature aggregation strictly follows causal pathways. Experiments conducted on the SynthSoM dataset demonstrate that the proposed model achieves a 6.7% improvement in prediction accuracy over the strongest baseline in standard scenarios and maintains its advantage in complex scenarios.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-12-19
  • 最后修改日期:2025-12-30
  • 录用日期:2025-12-30
  • 在线发布日期:
  • 出版日期:
文章二维码