基于时变转移概率矩阵的交互式多模型粒子滤波算法
DOI:
CSTR:
作者:
作者单位:

华东电子工程研究所

作者简介:

通讯作者:

中图分类号:

基金项目:


The Interacting Multiple Model Particle Filter Algorithm Based on Time-Varying Transition Probability Matrix
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    现代雷达已具备多维度、全空域的探测与跟踪能力,随着空中目标机动性的增强以及电磁环境的复杂化,目标跟踪作为雷达的关键技术,其对跟踪精度和实时响应能力的要求不断提高,根据上述要求,本文围绕雷达目标跟踪中的滤波算法展开研究,针对传统交互式多模型算法在跟踪机动目标时精度低的问题,本文通过实时修正马尔科夫转移概率矩阵,实现了自适应交互式多模型粒子滤波,提升了匹配模型概率和模型切换响应速度。通过仿真分析对比,改进的算法在位置跟踪精度方面相较于常规算法提升了16.1%,在速度跟踪精度方面提升了26.8%,证明了改进算法在机动性适应方面的显著优势。

    Abstract:

    Modern airborne radar systems have been equipped with multi-dimensional and full-airspace capabilities for detection and tracking. With the increasing maneuverability of airborne targets and the complexity of the electromagnetic environment, target tracking, as a key radar technology, is facing ever-growing demands for tracking accuracy and real-time response capability. In response to these challenges, filtering algorithms for air-to-air multi-target tracking in airborne radar systems are investigated in this thesis. To address the low tracking accuracy of traditional Interactive Multiple Model (IMM) algorithms for maneuvering targets, an Adaptive IMM Particle Filter is proposed by correcting the Markov transition probability matrix. Model matching and switching responsiveness are enhanced by the proposed method. Simulation results demonstrate that position tracking accuracy is improved by 16.1%, and velocity tracking accuracy is improved by 26.8%, compared to conventional approaches, highlighting its significant advantage in maneuverability adaptation.

    参考文献
    相似文献
    引证文献
引用本文

任泽民,王忠华.基于时变转移概率矩阵的交互式多模型粒子滤波算法计算机测量与控制[J].,2025,33(12):321-328.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-12-02
  • 最后修改日期:2025-12-15
  • 录用日期:2025-12-15
  • 在线发布日期: 2025-12-24
  • 出版日期:
文章二维码