基于知识蒸馏的量化卷积神经网络模型压缩研究
DOI:
CSTR:
作者:
作者单位:

中国电子科技集团公司第五十四研究所

作者简介:

通讯作者:

中图分类号:

TP389.1

基金项目:


Research on Model Compression of Quantized Convolutional Neural Networks Based on Knowledge Distillation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对边缘设备部署深度卷积神经网络存在的高资源消耗问题,对知识蒸馏与低比特量化协同优化方法进行了研究;采用了量化感知训练与蒸馏损失联合指导的关键技术,通过教师模型软标签监督和投影梯度下降优化,有效缓解了低比特量化的精度损失;在CIFAR-10和CIFAR-100数据集上的实验分析与验证,该方法实现了ResNet系列网络的4位量化,在CIFAR-10上达到92.1%的准确率,模型大小压缩至0.41MB;经FPGA端侧部署验证,ResNet-20推理时延从82.3ms降至5.67ms,满足了边缘计算对低延迟与高效率的工程需求;证实该方法能在保持精度的同时显著降低资源开销,为资源受限环境下的神经网络部署提供了有效解决方案。

    Abstract:

    Aiming at the high resource consumption problem in deploying deep convolutional neural networks on edge devices, a collaborative optimization method combining knowledge distillation and low-bit quantization was studied; The key technology of joint guidance from quantization-aware training and distillation loss was adopted, effectively mitigating the accuracy loss of low-bit quantization through teacher model soft label supervision and projected gradient descent optimization; Experimental tests on CIFAR-10 and CIFAR-100 datasets showed that this method achieved 4-bit quantization of ResNet series networks, reaching 92.1% accuracy on CIFAR-10 with model size compressed to 0.41MB; Verified through FPGA edge deployment, the ResNet-20 inference latency was reduced from 82.3ms to 5.67ms, meeting the engineering requirements for low latency and high efficiency in edge computing; The research confirms that this method can significantly reduce resource overhead while maintaining accuracy, providing an effective solution for neural network deployment in resource-constrained environments.

    参考文献
    相似文献
    引证文献
引用本文

何龙超,武唯康,李斌,常迎辉.基于知识蒸馏的量化卷积神经网络模型压缩研究计算机测量与控制[J].,2026,34(2):227-234.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-11-02
  • 最后修改日期:2025-11-16
  • 录用日期:2025-11-17
  • 在线发布日期: 2026-02-09
  • 出版日期:
文章二维码