基于图神经网络的多目标路由优化
DOI:
CSTR:
作者:
作者单位:

中国电子科技集团公司第五十四研究所

作者简介:

通讯作者:

中图分类号:

基金项目:


Multi-objective Routing Optimization Based on Graph Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着通信网络规模的不断扩大和业务需求的多样化,传统基于规则的路由优化方法已难以满足复杂网络环境下的性能需求,针对此问题提出一种基于图神经网络的多目标路由优化方法,将网络拓扑抽象为图结构,通过节点和边的特征信息进行学习,实现如时延、吞吐量和链路负载的多目标优化路由选择;针对传统方法中难以处理动态网络状态和非线性约束的问题,引入动态权重自适应机制以提升路由策略在不同网络状态下的自适应能力通过在仿真环境中构建不同规模网络拓扑;对比了GNN路由优化方法与Dijkstra算法、负载均衡算法和Q-learning算法的性能;实验结果表明,所提出方法在平均时延、吞吐量和负载均衡度方面均优于传统算法。

    Abstract:

    With the continuous expansion of communication network scale and the diversification of business demands, the traditional rule-based routing optimization methods have become difficult to meet the performance requirements in complex network environments. To address this issue, a multi-objective routing optimization method based on Graph Neural Network is proposed. This method abstracts the network topology into a graph structure and learns through the feature information of nodes and edges to achieve multi-objective (such as delay, throughput, and link load) optimized routing selection. To tackle the problems of traditional methods in handling dynamic network states and nonlinear constraints, a dynamic weight adaptive mechanism is introduced to enhance the adaptability of the routing strategy under different network states. By constructing network topologies of different scales in a simulation environment, the performance of the GNN routing optimization method is compared with that of Dijkstra algorithm, load balancing algorithm, and Q-learning algorithm. The experimental results show that the proposed method outperforms traditional algorithms in terms of average delay, throughput, and load balancing degree.

    参考文献
    相似文献
    引证文献
引用本文

范一哲,葛洪武,娄阳.基于图神经网络的多目标路由优化计算机测量与控制[J].,2026,34(2):219-226.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-11-01
  • 最后修改日期:2025-12-15
  • 录用日期:2025-12-16
  • 在线发布日期: 2026-02-09
  • 出版日期:
文章二维码