面向多维时间序列在线异常检测模型研究
DOI:
CSTR:
作者:
作者单位:

北京首都国际机场股份有限公司

作者简介:

通讯作者:

中图分类号:

基金项目:


Online Anomaly Detection Models for Multivariate Time Series
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    时间序列异常检测是流量分析、金融监测等领域的关键技术,在线多维时间序列异常检测是保障系统稳定性、预防故障和降低风险的核心技术需求。针对复杂的多维时间序列异常检测问题,结合多维时间序列异常特性,本文提出一种双层自适应多维时间序列异常检测模型TAMAD,TAMAD模型基于滑动窗口实时更新统序列统计特征,可以适应数据分布变化。TAMAD模型基于KDE模型检测单变量局部异常,然后结合JS散度和Z-score阈值捕捉多元序列之间的失衡性,实现局部异常和总体异常的识别。为了适应数据变化,TAMAD模型基于极值理论(EVT)动态阈值调整。TAMAD模型可以实现异常定位和类型分析。本文从真实数据和模拟数据进行大量实验对比,选择了目前主要的方法作为基准。实验结果表明TAMAD模型综合性能最优,兼顾高精度与强召回能力,适用于对可靠性要求高的场景。模拟数据的结果说明TAMAD模型能够很好的定位异常,提供异常合理解释。

    Abstract:

    . Anomaly detection in time series data is essential in fields like traffic analysis and financial monitoring. For system stability, fault prevention, and risk reduction, online multivariate time series anomaly detection is a key need. To solve the complex problem of detecting anomalies in multivariate time series data, this paper presents TAMAD, a two - layer adaptive model. TAMAD uses a sliding window to update statistical features in real - time, adapting to data distribution changes. It uses the KDE model for spotting univariate local anomalies, and combines JS divergence and Z - score thresholds to identify imbalances in multivariate sequences. This enables the recognition of both local and global anomalies. To suit data changes, TAMAD uses EVT - based dynamic threshold adjustment. TAMAD can locate anomalies and analyze their types. We run many experiments on real - world and synthetic data, choosing current main methods as baselines for comparison. Results show TAMAD is the best in overall performance, balancing high precision and strong recall, fitting for high - reliability scenarios. The synthetic data results show TAMAD can accurately locate anomalies and give reasonable explanations.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-10-26
  • 最后修改日期:2025-11-12
  • 录用日期:2025-11-14
  • 在线发布日期:
  • 出版日期:
文章二维码