基于PED-YOLOv11n的PCB表面缺陷检测算法
DOI:
CSTR:
作者:
作者单位:

沈阳化工大学 计算机科学与技术学院

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:


PCB Surface Defect Detection Algorithm Based on PED-YOLOv11n
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对工业PCB缺陷检测中目标多样、微小缺陷难检以及速度与精度难以兼顾的问题,对改进PED-YOLOv11n算法进行了研究。采用部分卷积构建轻量化主干网络以降低计算复杂度,引入高效多尺度注意力机制强化关键特征提取能力,设计动态自适应检测头以提升对形态多变目标的适应性,并利用Shape-NWD损失函数优化微小缺陷的边界框回归;经实验测试,改进算法在北京大学PCB缺陷数据集上的mAP50达到92.2%,相较基线模型提升了1.1个百分点,参数量与计算量分别降低18.6%和25.4%,推理速度提升15%;该算法在PCB缺陷检测任务中实现了高精度与高效率的良好平衡,为工业自动化智能质检系统的开发提供了可行的技术方案。

    Abstract:

    To address the challenges of diverse defect types, difficulty in detecting tiny defects, and the trade-off between detection speed and accuracy in industrial PCB defect inspection, an improved PED-YOLOv11n algorithm is proposed. A lightweight backbone network based on Partial Convolution (PConv) is constructed to reduce computational complexity. An Efficient Multi-scale Attention (EMA) mechanism is introduced to enhance key feature extraction, while a Dynamic Adaptive Detection Head is designed to improve adaptability to defects with varying shapes. In addition, the Shape-NWD loss function is employed to optimize bounding box regression for small defects. Experimental results on the Peking University PCB defect dataset show that the proposed algorithm achieves a mAP50 of 92.2%, representing a 1.1% improvement over the baseline model, while reducing the number of parameters and computational cost by 18.6% and 25.4%, respectively, and improving inference speed by 15%. The proposed method achieves a favorable balance between high accuracy and efficiency in PCB defect detection, providing a feasible technical solution for intelligent quality inspection in industrial automation.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-09-28
  • 最后修改日期:2025-11-12
  • 录用日期:2025-11-14
  • 在线发布日期:
  • 出版日期:
文章二维码