基于YOLOv8n改进的番茄成熟度检测方法
DOI:
CSTR:
作者:
作者单位:

青岛科技大学 信息科学技术学院

作者简介:

通讯作者:

中图分类号:

基金项目:

青岛市海洋科技创新专项(22-3-3-hygg-3-hy)、山东省重点研发计划(科技示范工程)课题(2021SFGC0701)。


RRM-YOLO: An Enhanced Tomato Ripeness Detection Method Based on YOLOv8n
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对番茄自动化采摘与分拣任务中未成熟果实与背景颜色相似、小目标识别困难以及枝叶遮挡三大挑战导致的检测精度低问题,对轻量化模型YOLOv8n进行改进,提出了一种名为RRM-YOLO的高效检测模型;首先,为增强模型对低对比度特征的判别能力并减少背景干扰,采用感受野注意力卷积替代部分标准卷积,实现动态空间权重分配;其次,为强化小目标特征提取与融合,引入了基于通道混洗的重参数化卷积与一次性聚合模块以替换原C2f模块;最后,为缓解遮挡导致的漏检问题,在网络深层融合了多头自注意力机制,以建模遮挡目标的全局上下文依赖关系;实验结果表明,RRM-YOLO在测试集上的精确率达到83.8%,mAP@50:95提升至70.7%,较基准YOLOv8n分别显著提高了6.8%与5.1%;同时,推理速度达到134.4 FPS;RRM-YOLO为解决复杂农业场景下的番茄检测难题提供了一种高精度、高效率且易于部署的视觉解决方案。

    Abstract:

    To address the challenge of low detection accuracy in automated tomato harvesting and sorting, primarily caused by the color similarity between immature fruits and the background, difficulties in small target recognition, and occlusion by branches and leaves, an improved lightweight model named RRM-YOLO is proposed based on enhancements to YOLOv8n. First, to enhance the model"s ability to discriminate low-contrast features and reduce background interference, Receptive Field Attention Convolution is adopted to replace certain standard convolutions, enabling dynamic spatial weighting. Second, to strengthen small target feature extraction and fusion, a Reparameterized Convolution Based on Channel Shuffle and One-Shot Aggregation is introduced to replace the original C2f module. Finally, to alleviate missed detections caused by occlusion, a Multi-Head Self-Attention mechanism is integrated into the deeper network layers to model global contextual dependencies of occluded objects. Experimental results demonstrate that RRM-YOLO achieves a precision of 83.8% and an mAP@50:95 of 70.7% on the test set, significantly improving by 6.8% and 5.1%, respectively, compared to the baseline YOLOv8n, while maintaining an inference speed of 134.4 FPS. RRM-YOLO provides a high-precision, efficient, and easily deployable visual solution for tomato detection challenges in complex agricultural scenarios.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-09-28
  • 最后修改日期:2025-11-07
  • 录用日期:2025-11-11
  • 在线发布日期:
  • 出版日期:
文章二维码