视觉-惯性组合导航的无人机抗侧风纵向着陆监测方法
DOI:
CSTR:
作者:
作者单位:

航天极创物联网研究院(南京)有限公司

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学(51175267)


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由于无人机在纵向着陆过程中受到侧风扰动的持续影响,使得其位姿点分布出现不对称,导航轨迹发生侧向偏移,导致传统单一导航方式难以通过映射无人机运动坐标系来实现高精度位姿状态估计,从而降低了着陆监测的整体有效性。提出基于视觉-惯性组合导航的无人机抗侧风纵向着陆监测方法。基于视觉导航原理估计无人机相对位姿可以确定导航轨迹的侧向偏移量,从而适度抵消侧风引起的位姿点分布不对称问题。将视觉估计的位姿映射到惯性坐标系中描述无人机运动,构建无人机运动学坐标系。整合视觉导航所提供的相对位姿估计,利用视觉与惯性传感器的观测数据,对惯性单元输出的无人机运动坐标系映射至视觉定义的导航区域中,完成视觉-惯性组合导航模型的构建。在此基础上,结合着陆轨迹与速度分析,计算侧风偏流角并动态调整下滑点,建立了抗侧风控制系统,以机翼所提供升力的纵向分量抵消侧风影响。分别从进入段、直线下滑段、拉平段、平飘段、地面滑跑段五个方面研究无人机抗侧风纵向着陆的运动特性,再基于轨迹下滑、轨迹拉平两个主要纵向着陆阶段实施监测,完成视觉-惯性组合导航下无人机抗侧风纵向着陆监测方法的设计。实验结果表明,侧风干扰下应用所提方法所得到的速度曲线在14 min左右呈现出明显的下降趋势,其整体均值水平与波动形态与真实速度曲线基本一致,获得的着陆点坐标与真实坐标的平均偏差仅为0.8 m,纵向滚转角与实际着陆位姿之间的偏差不超过6°,在速度监测、着陆点监测、滚转角监测方面不受侧风影响,纵向着陆监测效果较好。

    Abstract:

    Due to the continuous influence of crosswind disturbance during the longitudinal landing process of the drone, the distribution of its pose points becomes asymmetric, and the navigation trajectory deviates laterally, making it difficult for traditional single navigation methods to achieve high-precision pose state estimation by mapping the drone"s motion coordinate system, thereby reducing the overall effectiveness of landing monitoring. Propose a longitudinal landing monitoring method for unmanned aerial vehicles against crosswind based on visual inertial integrated navigation. Estimating the relative pose of a drone based on visual navigation principles can determine the lateral offset of the navigation trajectory, thereby moderately offsetting the asymmetric distribution of pose points caused by crosswinds. Map the visually estimated pose to an inertial coordinate system to describe the motion of the drone and construct a kinematic coordinate system for the drone. Integrating the relative pose estimation provided by visual navigation, using observation data from visual and inertial sensors, mapping the UAV motion coordinate system output by the inertial unit to the visually defined navigation area, and completing the construction of the visual inertial integrated navigation model. On this basis, combined with landing trajectory and velocity analysis, the crosswind deflection angle is calculated and the glide point is dynamically adjusted to establish an anti crosswind control system, which offsets the crosswind effect with the longitudinal component of the lift provided by the wing. Research on the motion characteristics of unmanned aerial vehicles (UAVs) for anti crosswind longitudinal landing from five aspects: entry stage, straight-line descent stage, leveling stage, drifting stage, and ground sliding stage. Based on the two main longitudinal landing stages of trajectory descent and trajectory leveling, monitoring is implemented to complete the design of a monitoring method for UAV anti crosswind longitudinal landing under visual inertial combination navigation. The experimental results show that the velocity curve obtained by applying the proposed method under crosswind interference shows a significant downward trend at around 14 minutes, and its overall mean level and fluctuation pattern are basically consistent with the real velocity curve. The average deviation between the landing point coordinates obtained and the real coordinates is only 0.8 meters, and the deviation between the longitudinal roll angle and the actual landing pose does not exceed 6 degrees. It is not affected by crosswinds in velocity monitoring, landing point monitoring, and roll angle monitoring, and the longitudinal landing monitoring effect is good.

    参考文献
    相似文献
    引证文献
引用本文
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-09-11
  • 最后修改日期:2025-11-14
  • 录用日期:2025-11-14
  • 在线发布日期:
  • 出版日期:
文章二维码