基于改进YOLOv11的车辆目标检测方法
DOI:
CSTR:
作者:
作者单位:

1.云南省交通投资建设集团有限公司,云南 昆明 650000;2.长安大学,运输工程学院,陕西西安 710000

作者简介:

通讯作者:

中图分类号:

基金项目:

云南省数字交通重点实验室项目(202205AG070008)


Vehicle target detection method based on improved YOLOv11 in the context of intelligent transportation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    车辆目标检测是自动驾驶环境感知的关键,对于维护智慧交通的安全发展至关重要。针对当前车辆目标检测方法存在的计算效率低、易受干扰等问题,针对当前车辆目标检测方法存在的计算效率低、易受干扰等问题,研究提出了一种基于自适应特征收集再分配模块和单目标检测11代网络的车辆目标检测模型。该模型结合自适应特征收集再分配模块对YOL单目标检测11代网络的检测性能进行提升,并结合挤压-激励注意力机制与线性可变形卷积对单目标检测11代网络的骨干模块进行改进,结合组混洗卷积对网络的颈部模块进行轻量化改进,用以实现更精确高效地车辆目标检测。在仿真实验中,研究提出的车辆目标检测模型对于“大巴”和“汽车”两个待测目标标签的检测精度分别为0.95和0.96,对于“自行车”和“行人”的召回率分别为0.83和0.85,均具有较高的检测精度,说明该模型能够较为准确地对不同尺寸的车辆目标进行识别。实验结果表明,研究提出的车辆目标检测模型具有更优的检测精度和检测速率,并且具有较好的泛化能力,说明该模型能够更好地完成车辆目标检测任务。

    Abstract:

    Vehicle target detection is the key to environmental perception in autonomous driving and is of vital importance for maintaining the safe development of intelligent transportation. In view of the problems such as low computational efficiency and susceptibility to interference existing in the current vehicle target detection methods, a vehicle target detection model based on an adaptive feature collection and redistribution module and a single-target detection 11th generation network is proposed. This model enhances the detection performance of the 11th generation YOL single-object detection network by combining the adaptive feature collection and redistribution module, improves the backbone module of the 11th generation YOL single-object detection network by integrating the extruding-excitation attention mechanism and linear detachable convolution, and makes lightweight improvements to the neck module of the network by combining the group mixed wash convolution. To achieve more accurate and efficient vehicle target detection. In the simulation experiment, the vehicle target detection model proposed by the research has detection accuracies of 0.95 and 0.96 for the two target labels of "bus" and "car" respectively, and the recall rates of 0.83 and 0.85 for "bicycle" and "pedestrian" respectively. Both have relatively high detection accuracies. It is indicated that this model can accurately identify vehicle targets of different sizes. The experimental results show that the vehicle target detection model proposed in the research has better detection accuracy and detection rate, and has better generalization ability, indicating that this model can better complete the vehicle target detection task.

    参考文献
    相似文献
    引证文献
引用本文

向鹏程.基于改进YOLOv11的车辆目标检测方法计算机测量与控制[J].,2026,34(2):87-95.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-09-03
  • 最后修改日期:2025-09-23
  • 录用日期:2025-09-23
  • 在线发布日期: 2026-02-09
  • 出版日期:
文章二维码