基于多源传感与双分支网络的旋转设备预测性维护方法
DOI:
CSTR:
作者:
作者单位:

中国恩菲工程技术有限公司

作者简介:

通讯作者:

中图分类号:

基金项目:

国家科技部重点研发计划(工业软件)(2022YFB3304901);金属冶炼重大事故防控技术支撑基地项目。


A Predictive Maintenance Method for Rotating Equipment Based on Multi-Source Sensing and Dual-Branch Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    伴随工业装备复杂度及自动化程度的持续提高,传统事后检修与定期维保模式已无法满足现代工业生产对设备可靠性与安全性的严苛要求。针对现有检测算法普遍存在对异常样本量敏感、运算效率低下难以适配工业现场实时性需求的技术瓶颈,本文创新性地提出一种融合振动、温度、电压及电流等多源传感信号的设备预测性维护新方法。该方法通过构建双分支预测网络架构,深度挖掘设备健康状态下的多维传感器数据特征,精准捕捉正常工况的潜在运行规律,实现对当前时刻正常数据的可靠预测;基于预测值与实测值的绝对误差分布特性,建立正常工况的高斯统计模型;当监测数据显著偏离该模型时,系统可自动判定设备异常状态,并根据偏离程度量化评估传感器数据的异常等级,进而生成差异化的处理策略。实验验证表明,所提双分支预测网络的平均绝对误差低至0.069与Informer相比平均绝对误差降低了2.53倍,推理速度达到1593 SPS,具备优异的预测精度与实时性能;在设备异常工况下,算法能够依据传感器数据的异常程度自动触发相应处理机制。本研究成果为工业设备的智能化运维提供了高效解决方案,具有显著的工程应用价值。

    Abstract:

    As the complexity and degree of automation of industrial equipment continue to increase, traditional corrective and time-based preventive maintenance paradigms can no longer meet the stringent reliability and safety requirements of modern industrial production. To address the pervasive bottlenecks of existing detection algorithms—namely sensitivity to the quantity of anomalous samples and low computational efficiency that hinders real-time deployment in industrial settings—this paper proposes an innovative predictive maintenance method that fuses multi-source sensor signals, including vibration, temperature, voltage, and current. The method builds a dual-branch predictive network architecture that deeply mines multi-dimensional sensor features under healthy operating conditions, precisely capturing latent patterns of normal operation to enable reliable prediction of expected normal readings at the current time step. Based on the distribution of absolute errors between predictions and measurements, a Gaussian statistical model of normal behavior is established. When monitored data significantly deviate from this model, the system automatically determines an abnormal equipment state and quantifies anomaly severity according to the degree of deviation, thereby generating tailored response strategies. Experimental results show that the proposed dual-branch network achieves a mean absolute error as low as 0.069, representing a 2.53-fold reduction compared with Informer, and an inference speed of 1593 SPS, demonstrating excellent predictive accuracy and real-time performance. Under abnormal operating conditions, the algorithm can automatically trigger corresponding handling mechanisms based on the severity of sensor-data anomalies. This work provides an efficient solution for intelligent operation and maintenance of industrial equipment and offers significant engineering application value.

    参考文献
    相似文献
    引证文献
引用本文

郝朋越,郭丽敏,柴一清,刘庚辰,谢红辉,杨旭,李衍志.基于多源传感与双分支网络的旋转设备预测性维护方法计算机测量与控制[J].,2026,34(2):80-86.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-08-14
  • 最后修改日期:2025-09-19
  • 录用日期:2025-09-23
  • 在线发布日期: 2026-02-09
  • 出版日期:
文章二维码