基于融合改进人工势场法的自适应RRT*路径规划算法
DOI:
CSTR:
作者:
作者单位:

1.广东交通职业技术学院

作者简介:

通讯作者:

中图分类号:

基金项目:

广东省普通高校新一代电子信息重点领域专项(2022ZDZX1058);广东交通职业技术学院科研项目(GDCP-ZX-2023-003-N1);广东交通职业技术学院大学生科技创新项目(GDCP-ZX-2023-035-N6)


Adaptive RRT* Path Planning Algorithm Based on Fusion of Improved Artificial Potential Field Method
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决传统RRT类算法在路径规划中收敛速度慢冗余节点多,而人工势场法又易陷入局部最优解的问题,提出一种融合了改进人工势场法(APF)的自适应RRT*路径规划算法。算法对传统APF进行改进,引入障碍物切向力分量,并采用自适应动态调整策略,根据路径扩展难度动态调整切向力的大小,增强了算法逃逸局部最优的能力。设计出随机搜索树扩展的三模式机制,即随机树以概率p1进行APF模式引导的扩展、以概率p2进行RRT*随机采样扩展,以概率p3进行目标偏向扩展,并通过统计窗口内随机树扩展成功率动态调整各模式的概率,确保在复杂环境中能高效收敛,并引入路径节点优化策略,得到相对最优路径。仿真结果显示,算法在简单环境中的性能显著高于RRT类、APF类算法;在复杂环境,算法平均搜索时间、路径长度和转弯次数分别为RRT*算法的62.7%、71.8%和10.5%。算法的时间复杂度与RRT*类量级保持一致,收敛路径长度的标准差显著降低且分布整体偏左侧,呈现长尾特征,表明了算法的高效性、高稳定性和最优路径的高可达性。

    Abstract:

    To address the issues of slow convergence and excessive redundant nodes in traditional RRT-based algorithms for path planning, as well as the tendency of the artificial potential field (APF) method to fall into local optima, this paper proposes an adaptive RRT* path planning algorithm fused with an improved APF approach. The algorithm enhances the traditional APF by introducing a tangential force component from obstacles and employing an adaptive dynamic adjustment strategy, which dynamically modulates the magnitude of the tangential force based on path expansion difficulty, thereby improving the algorithm’s ability to escape local optima. A three-mode mechanism for expanding the random search tree is designed, in which the tree performs APF-guided expansion with probability p1, RRT* random sampling expansion with probability p2, and goal-biased expansion with probability p3. The probabilities of each mode are dynamically adjusted by statistically analyzing the success rates of tree expansions within a specified window, ensuring efficient convergence in complex environments. Additionally, a path node optimization strategy is incorporated to obtain a relatively optimal path. Simulation results demonstrate that the proposed algorithm significantly outperforms RRT-based and APF-based algorithms in simple environments. In complex environments, the average search time, path length, and number of turns are 62.7%, 71.8%, and 10.5% of those for the RRT* algorithm, respectively. The algorithm maintains the same time complexity as RRT*-based methods, with a significantly reduced standard deviation in the searched path lengths and a long-tailed distribution, indicating high efficiency, stability, and accessibility to optimal paths.

    参考文献
    相似文献
    引证文献
引用本文

崔春雷,李锋,罗权财,冯建.基于融合改进人工势场法的自适应RRT*路径规划算法计算机测量与控制[J].,2025,33(12):206-214.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-08-01
  • 最后修改日期:2025-09-01
  • 录用日期:2025-09-01
  • 在线发布日期: 2025-12-24
  • 出版日期:
文章二维码