基于改进YOLOv10n的风机叶片缺陷检测研究
DOI:
CSTR:
作者:
作者单位:

南京工程学院 计算机工程学院 江苏 南京

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:

江苏省产学研合作项目 (BY20230656)


Research on Defect Detection of Wind Turbine Blades Based on Improved YOLOv10n
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对风机叶片缺陷检测中存在的多尺度目标敏感度低、复杂背景干扰严重、定位精度不足等问题,现提出一种改进YOLOv10n的缺陷检测算法,在SPPF模块中嵌入大核注意力机制LSKA,构建多尺度特征增强网络,有效解决了叶片表面反光导致的误检问题;设计通道优先注意力机制CPCA,通过建立跨维度交互通道选择模型提升了对微小缺陷特征的响应能力;将模型原损失函数替换为Wise-MPDIoU损失函数,融合动态权重调整策略与形状感知约束。实验结果表明,在无人机采集的风机叶片数据集上,改进算法mAP@0.5达到84.1%,较基准模型提升2.9个百分点,为风电设备智能运维提供了可靠的技术方案。

    Abstract:

    To address the issues of low sensitivity to multi-scale targets, severe complex background interference, and insufficient localization accuracy in wind turbine blade defect detection, an improved YOLOv10n defect detection algorithm is proposed. In the SPPF module, a large-kernel attention mechanism (LSKA) is embedded to construct a multi-scale feature enhancement network, effectively solving the problem of false detections caused by reflections on the blade surface. A channel-priority attention mechanism (CPCA) is designed to enhance the response to small defect features by establishing a cross-dimensional interaction channel selection model. The original loss function of the model is replaced with the Wise-MPDIoU loss function, which integrates dynamic weight adjustment strategies and shape-aware constraints. Experimental results show that on a dataset of wind turbine blades collected by drones, the improved algorithm achieves an mAP@0.5 of 84.1%, representing a 2.9 percentage point improvement over the baseline model. This provides a reliable technical solution for the intelligent operation and maintenance of wind power equipment.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-07-30
  • 最后修改日期:2025-08-26
  • 录用日期:2025-08-27
  • 在线发布日期:
  • 出版日期:
文章二维码