基于人工智能双模态交互的无损检测作业管理系统研究
DOI:
CSTR:
作者:
作者单位:

中安检测集团湖北有限公司

作者简介:

通讯作者:

中图分类号:

TP315

基金项目:


AI-Powered Dual-Modal Interaction System for Non-Destructive Testing Operations
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    该研究针对NDT作业流程效率低、交互受限及专业知识依赖度高等问题,设计并实现了融合语音-文本双模态交互与RAG技术的智能作业管理系统。系统采用分层架构,集成自然语言处理引擎与双知识库框架,通过意图识别、结构化数据提取及多策略知识检索,实现检测数据实时语音录入、标准条款查询与智能报告生成等,并通过便携式语音终端实现高效人机交互。实验结果显示,该系统现场数据录入效率较传统方式提升约6.1倍,在高噪声环境下识别成功率达88%,办公环境下报告生成效率提升63.8%。用户满意度调查表明,系统在易用性、功能性及交互体验方面获得一致认可。该系统有效降低了NDT现场操作与报告编制的技术门槛,提高了作业效率与数据可靠性,满足了工业检测智能化与现场化的应用需求。

    Abstract:

    This research addresses the issues of low efficiency, limited interaction, and high dependence on specialized knowledge in NDT operations. It designs and implements an intelligent operation management system integrating dual-modal (speech-text) interaction and RAG technology. The system employs a layered architecture, integrating a natural language processing engine and a dual knowledge base framework. Through intent recognition, structured data extraction, and multi-strategy knowledge retrieval, it enables real-time voice input of inspection data, querying of standard clauses, and intelligent report generation. Efficient human-machine interaction is achieved via a portable voice terminal. Experimental results show the system improves on-site data entry efficiency by approximately 6.1 times compared to traditional methods, achieves an 88% recognition success rate in high-noise environments, and enhances report generation efficiency by 63.8% in office environments. User satisfaction surveys indicate consistent approval of the system's usability, functionality, and interactive experience. This system effectively lowers the technical barriers for NDT field operations and report compilation, enhances operational efficiency and data reliability, and meets the application demands for intelligent and on-site industrial inspection.

    参考文献
    相似文献
    引证文献
引用本文

吴洋,刘洋,贾新,张鹏,焦传飞.基于人工智能双模态交互的无损检测作业管理系统研究计算机测量与控制[J].,2025,33(12):230-236.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-07-24
  • 最后修改日期:2025-08-13
  • 录用日期:2025-08-15
  • 在线发布日期: 2025-12-24
  • 出版日期:
文章二维码