基于改进YOLOv10n的X射线焊缝缺陷检测方法研究
DOI:
CSTR:
作者:
作者单位:

南京工程学院 应用技术学院

作者简介:

通讯作者:

中图分类号:

TG441.7

基金项目:

国家自然科学基金资助项目(52075261)


Study on X-Ray Weld Defect Detection Method Based on Improved YOLOv10n
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有X射线焊缝缺陷检测方法存在检测精度低和易漏检等问题,提出基于改进YOLOv10n的X射线焊缝缺陷检测模型SFE-YOLOv10n;采用SPD-Conv空间到深度卷积替换主干网络中传统卷积,增强模型对X射线焊缝小目标缺陷特征信息的捕获能力;添加轻量化的C2f-Faster模块代替主干网络和颈部网络中的C2f模块,降低模型计算复杂度,实现模型轻量化;在颈部网络C2f-Faster模块基础上引入EMA注意力机制,提高焊缝缺陷检测准确性;实验对五种典型X射线焊缝缺陷进行了测试,结果表明SFE-YOLOv10n模型的准确度、召回率、平均精度和检测帧率分别达到89.5%、86.2%、92.8%和80.8f/s,较YOLOv10n原模型分别提高了3.6%、1.5%、4.3%和1.7%,同时模型参数量略有下降;与现有方法相比,SFE-YOLOv10n模型在保证轻量化的同时能够准确检测X射线焊缝不同缺陷,经实验测试满足了工业生产对X射线焊缝缺陷检测的要求。

    Abstract:

    Aiming at the problems of insufficient detection accuracy and susceptibility to missed detection in existing X-ray weld defect detection methods, an improved YOLOv10n-based model named SFE-YOLOv10n is proposed; SPD-Conv spatial-to-depth convolution replaces the conventional convolution in the backbone network to enhance the model"s ability to capture feature information of small target defects in X-ray welds; A lightweight C2f-Faster module is added to replace the C2f module in both the backbone and neck networks, reducing model computational complexity and achieving model lightweighting; The EMA attention mechanism is introduced based on the C2f-Faster module in the neck network to improve weld defect detection accuracy; Experiments were conducted on five typical types of X-ray weld defects, with results showing that the SFE-YOLOv10n model achieved accuracy, recall, mean average precision (mAP), and detection frame rates of 89.5%, 86.2%, 92.8%, and 80.8f/s respectively, representing improvements of 3.6%, 1.5%, 4.3%, and 1.7% over the original YOLOv10n model, while the model parameter count slightly decreased; Compared to existing methods, the SFE-YOLOv10n model accurately detects various X-ray weld defects while maintaining lightweight characteristics, and experimental testing verified that it meets the requirements for X-ray weld defect detection in industrial production。

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-07-22
  • 最后修改日期:2025-08-25
  • 录用日期:2025-08-27
  • 在线发布日期:
  • 出版日期:
文章二维码