基于融合深度神经网络的刚柔耦合机械臂优化控制系统设计
DOI:
CSTR:
作者:
作者单位:

西安交通大学城市学院 计算机学院

作者简介:

通讯作者:

中图分类号:

基金项目:


Design of Optimization Control System for Rigid Flexible Coupling Robot Arm Based on Fusion Deep Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    刚柔耦合机械臂融合了刚性元件的稳定承载能力与柔性结构的灵活适应性,这种灵活性也导致了机械臂中刚性元件与柔性结构之间的复杂耦合关系,这种耦合关系会随着机械臂的运动而动态变化,引发运动扰动,难以生成有效的补偿调节信号抵消扰动影响,降低控制精度。针对上述问题,设计基于融合深度神经网络的刚柔耦合机械臂优化控制系统。通过跟踪机械臂位姿输入信号的变化定义其高阶导数,捕捉位姿信号的变动,准确判定机械臂位置。设计耦合模块扩展状态观测器估计机械臂位置的扰动状态,生成新的调节信号。将信号输入运动扰动补偿器中,依据补偿项参数取值进行前馈运算,推导准静态过程,对运动扰动进行精准补偿,降低刚性元件、柔性结构之间耦合关系的变化对机械臂运动偏移量造成的扰动。在三维空间中表示机械臂运动位姿,以求解机械臂正向运动学方程,根据耦合观测器的能量动态分布规律,定义机械臂动力学方程,实现对刚柔耦合机械臂的运动学与动力学分析。基于融合深度神经网络构建输入与输出的复杂映射关系,定义多层非线性变换原则,以机械臂运动控制器各模块的输入作为模型输入项,以运动学与动力学表达式作为方程运算标准,基于完整的神经函数校验输入项的运算值,输出满足实际应用需求的机械臂控制条件,完成优化控制。实验结果表明,所设计系统既控制了机器臂末端位姿,又保障了运动轨迹的收敛性能,运动扰动补偿器响应曲线也突出了该系统对机械臂关节角控制的有效性。

    Abstract:

    The rigid flexible coupling robotic arm combines the stable load-bearing capacity of rigid components with the flexible adaptability of flexible structures. This flexibility also leads to a complex coupling relationship between rigid components and flexible structures in the robotic arm. This coupling relationship will dynamically change with the movement of the robotic arm, causing motion disturbances and making it difficult to generate effective compensation and adjustment signals to counteract the disturbance effects and reduce control accuracy. Design an optimized control system for a rigid flexible coupled robotic arm based on the fusion of deep neural networks to address the above issues. By tracking the changes in the input signal of the robotic arm"s pose, defining its higher-order derivative, capturing the changes in the pose signal, and accurately determining the position of the robotic arm. Design a coupling module to extend the state observer to estimate the disturbance state of the robotic arm position and generate new adjustment signals. Input the signal into the motion disturbance compensator, perform feedforward operation based on the compensation parameter values, derive quasi-static processes, accurately compensate for motion disturbances, and reduce the disturbance caused by changes in the coupling relationship between rigid components and flexible structures on the motion offset of the robotic arm. Representing the motion pose of the robotic arm in three-dimensional space to solve the forward kinematics equation of the robotic arm, defining the dynamic equation of the robotic arm based on the energy dynamic distribution law of the coupled observer, and realizing the kinematic and dynamic analysis of the rigid flexible coupled robotic arm. Based on the fusion of deep neural networks, a complex mapping relationship between input and output is constructed, and multi-layer nonlinear transformation principles are defined. The input of each module of the robotic arm motion controller is used as the model input term, and the kinematic and dynamic expressions are used as the equation operation standards. The operation values of the input term are verified based on the complete neural function, and the robotic arm control conditions that meet the practical application requirements are output to complete the optimization control. The experimental results show that the designed system not only controls the end pose of the robotic arm, but also ensures the convergence performance of the motion trajectory. The response curve of the motion disturbance compensator also highlights the effectiveness of the system in controlling the joint angle of the robotic arm.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-07-21
  • 最后修改日期:2025-08-25
  • 录用日期:2025-08-27
  • 在线发布日期:
  • 出版日期:
文章二维码