基于改进YOLOv11的短波信号识别方法研究
DOI:
CSTR:
作者:
作者单位:

中国电子科技集团公司第五十四研究所

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(U22B2002)


Research on Shortwave Signal Recognition Method Based on Improved YOLOv11

Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对短波信号侦察中信号识别效果不佳的问题,提出了一种基于信号时频图像和WT-YOLO的短波信号识别方法。该方法首先将短波信号通过短时傅里叶变换(STFT,short time fourier transform)变成信号时频图形式;针对信号低频语义信息与高频细节互相干扰问题,在模型中引入基于小波变换上采样WFU模块来提高模型的特征融合能力;设计了三重感受野(TRF,triple receptive filed)模块,解决单一感受野无法多特征提取的问题;引入了PIoUv2模块提高模型定位精度,从而提高模型检测识别精度;实验结果表明,改进后的YOLOv11比原有网络模型有更高的识别准确率,达到96.4%,识别错误率相对下降55.6%。

    Abstract:

    Aiming at the problem of poor signal recognition effect in shortwave signal reconnaissance, a shortwave signal recognition method based on signal time-frequency image and WT-YOLO is proposed. This method first converts the shortwave signal into a signal time-frequency image form through short-time Fourier transform (STFT, short time fourier transform). To address the issue of mutual interference between low-frequency semantic information and high-frequency details of the signal, a wavelet transform upsampling WFU module is introduced into the model to enhance the feature fusion ability of the model. A triple receptive field (TRF, triple receptive field) module is designed to solve the problem that a single receptive field cannot extract multiple features. The PIoUv2 module is introduced to improve the model"s positioning accuracy, thereby enhancing the detection and recognition accuracy of the model. Experimental results show that the improved YOLOv11 has a higher recognition accuracy of 96.4% compared to the original network model, with a relative decrease in recognition error rate of 55.6%.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-07-17
  • 最后修改日期:2025-08-24
  • 录用日期:2025-08-25
  • 在线发布日期:
  • 出版日期:
文章二维码