基于改进YOLOv9算法的钢丝绳表面缺陷检测
DOI:
CSTR:
作者:
作者单位:

国家电投集团山西电力有限公司

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:


Surface Defect Detection of Steel Wire Ropes Based on Improved YOLOv9 AlgorithmLi Lejun Liang guowei(State Power Investment Corporation Shanxi Electric Power Co., Ltd., Taiyuan, Shanxi 030001, China)
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对钢丝绳表面尺寸较小的断丝和磨损缺陷的检测精度与实时性的需求,本研究基于YOLOv9框架进行了算法优化。通过引入PGI(Programmable Gradient Information)辅助监督机制增强梯度信息传播,构建GELAN(Generalized Efficient Layer Aggregation Network)高效特征提取架构,并设计多尺度特征融合模块(MSFM,Multi-Scale Fusion Module)与动态稀疏注意力机制(DSAM,Dynamic Sparse Attention Mechanism),显著提升了模型对微小目标及遮挡目标的特征表征能力。通过采用Version数据集进行实验验证,实验结果表明改进后模型的检测精度(mAP@0.5)达到90.2%,推理速度提升至587.43,较原YOLOv9的性能显著提升。该算法在钢丝绳表面缺陷检测中仍能保持优异的检测性能,为智能化钢丝绳表面断丝和磨损检测提供了可靠的技术解决方案。

    Abstract:

    To address the requirements for detection accuracy and real-time performance in identifying small-sized broken wires and wear defects on the surface of steel wire ropes, the algorithm is optimized based on the YOLOv9 framework. By introducing the PGI auxiliary supervision mechanism to enhance gradient information propagation, constructing a GELAN for efficient feature extraction, and designing a Multi-Scale Fusion Module along with a Dynamic Sparse Attention Mechanism, the model's feature representation capability for tiny and occluded targets is significantly improved. Experimental validation was conducted using the Version dataset, and the results demonstrate that the improved model achieves a detection accuracy of 90.2% and an inference speed f 587.43, representing a significant performance enhancement over the original YOLOv9. The algorithm maintains excellent detection performance for surface defects on steel wire ropes, providing a reliable technical solution for intelligent detection of broken wires and wear on steel wire rope surfaces.

    参考文献
    相似文献
    引证文献
引用本文

李乐军,梁国伟.基于改进YOLOv9算法的钢丝绳表面缺陷检测计算机测量与控制[J].,2025,33(9):56-62.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-07-17
  • 最后修改日期:2025-08-02
  • 录用日期:2025-08-04
  • 在线发布日期: 2025-09-26
  • 出版日期:
文章二维码