面向无人机信号检测与识别的自动标注方法
DOI:
CSTR:
作者:
作者单位:

中国电子科技集团公司 第五十四研究所

作者简介:

通讯作者:

中图分类号:

TP181; TN971 ?

基金项目:


Automatic Labeling Method for UAV Signal Detection and Recognition
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    深度学习的性能高度依赖海量、高质量标注数据,但传统标注方式依赖人工面临效率低下、易出错等挑战,难以满足快速构建大规模精准数据集的需求;针对无人机射频信号检测与识别问题,为提高数据标注的效率,提出了一种基于轮廓检测的自动标注方法,该方法利用时频图中信号与背景的像素值差异,通过轮廓检测技术自动分离并定位信号区域坐标,并借助K-Means聚类算法精准区分不同目标信号并分配类别标签;实验表明,该自动标注方法在不同信噪比条件下均能取得优异的检测性能,信噪比达8dB时检测率稳定接近100%;将标注数据输入YOLOv11网络进行训练,最终由训练好的网络实现对无人机信号存在性及所属机型的高精度识别,结果显示对不同无人机信号分类准确率高;基于轮廓检测的自动标注方法的提出,有效提高了数据标注效率和准确性,对提升深度学习模型性能、解决实际工程问题具有重要意义

    Abstract:

    The performance of deep learning models is highly dependent on massive, high-quality annotated data. However, traditional manual annotation methods face challenges such as low efficiency and susceptibility to errors, making it difficult to meet the demand for rapidly constructing large-scale, precise datasets. To address the issue of drone RF signal detection and identification and improve data annotation efficiency, this paper proposes an automatic annotation method based on contour detection. This approach leverages the difference in pixel values between signals and the background in time-frequency spectrograms to automatically separate and locate signal region coordinates using contour detection techniques. Furthermore, it employs the K-Means clustering algorithm to accurately distinguish different target signals and assign category labels. Experimental results demonstrate that this automatic annotation method achieves excellent detection performance across various signal-to-noise ratio (SNR) conditions. When the SNR reaches 8 dB, the detection rate stably approaches 100%. The annotated data was input into a YOLOv11 network for training, and the trained network ultimately achieved high-precision identification of drone signal presence and corresponding aircraft type. The results show high classification accuracy for different drone signals. The proposal of this contour-detection-based automatic annotation method effectively enhances both the efficiency and accuracy of data annotation, holding significant importance for improving deep learning model performance and solving practical engineering problems.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-07-13
  • 最后修改日期:2025-08-23
  • 录用日期:2025-08-25
  • 在线发布日期:
  • 出版日期:
文章二维码