基于OA-YOLOv8的学生课堂行为识别方法研究
DOI:
CSTR:
作者:
作者单位:

西安明德理工学院 信息工程学院

作者简介:

通讯作者:

中图分类号:

基金项目:

明德创新(2024MDY04)


Research on Student Classroom Behavior Recognition Method Based on OA-YOLOv8
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有基于视觉的方法因实际课堂环境中的遮挡问题导致特征模糊、准确率下降,设计了一种改进的YOLOv8的学生课堂行为识别模型OA-YOLOv8。在YOLOv8s模型的Head结构中,并行引入一个辅助遮挡预测头OPH。通过在线数据增强策略,动态模拟不同程度的遮挡并生成代理遮挡标签,以监督OPH模块的学习,模型将遮挡程度作为一项类别属性进行预测,从而缓解因遮挡引发的特征模糊问题。通过采用SCB课堂行为数据集上进行了实验验证,实验结果表明OA-YOLOv8的精度(mAP@0.5和mAP@0.5:0.95)相较于基线YOLOv8s分别提升了4.6%和3.2%;在中度和重度遮挡场景下,模型性能分别提升了6.2%和8.8%;在区分相似视觉特征的细粒度行为时,平均精度提升了4.9%。该模型有效提升了在复杂遮挡环境下学生课堂行为识别的准确性和鲁棒性,为智慧校园建设中的个性化教学分析反馈提供了更可靠的技术支持。

    Abstract:

    To address the problem of feature blurring and accuracy degradation caused by occlusion in real classroom environments, an improved YOLOv8 model for student classroom behavior recognition, OA-YOLOv8, was designed. An auxiliary occlusion prediction head (OPH) was introduced in parallel to the YOLOv8s model's head structure. Through an online data augmentation strategy, varying degrees of occlusion were dynamically simulated and proxy occlusion labels were generated to supervise the learning of the OPH module. The model then predicted the occlusion degree as a categorical attribute, alleviating the feature blurring caused by occlusion. Experimental validation was conducted on the SCB classroom behavior dataset. Results show that OA-YOLOv8 achieves 4.6% and 3.2% higher accuracy (mAP@0.5 and mAP@0.5:0.95) than the baseline YOLOv8s. Performance improved by 6.2% and 8.8% in moderate and heavy occlusion scenarios, respectively. The average precision improved by 4.9% when distinguishing fine-grained behaviors with similar visual features. This model effectively improves the accuracy and robustness of student classroom behavior recognition in complex occlusion environments, and provides more reliable technical support for personalized teaching analysis and feedback in the construction of smart campuses.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-07-11
  • 最后修改日期:2025-08-22
  • 录用日期:2025-08-22
  • 在线发布日期:
  • 出版日期:
文章二维码