基于JSD-Informer模型的分布式光伏发电功率短期预测方法
DOI:
CSTR:
作者:
作者单位:

1.国网江苏省电力有限公司;2.南京南瑞信息通信科技有限公司

作者简介:

通讯作者:

中图分类号:

TM615

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    精确的气象信息是实现光伏发电功率精准预测的基础;然而,分布式光伏电站通常布局分散、装机容量小,且普遍缺乏专用气象站;基于此,提出了JSD-Informer模型的分布式光伏发电功率短期预测方法;通过分析光伏电站周边的气象站点的数值天气预报、光伏电站的发电功率及其地理信息之间的映射关系;精准量化多源气象数据的分布差异,融合多源气象站数值天气预报,计算分布式光伏电站所在地的气象信息数据;结合融合的气象信息,利用詹森-香农散度来优化Informer网络的稀疏自注意力机制,构建分布式光伏发电功率短期预测模型;通过对比实验分析表明,所提方法具有较高的预测精度和较好的鲁棒性,分布式光伏功率预测计算的均方根误差和平均绝对误差分别低至0.10和0.06。

    Abstract:

    Accurate meteorological information is the foundation for achieving precise prediction of photovoltaic power generation; However, distributed photovoltaic power plants are usually scattered in layout, have small installed capacity, and generally lack dedicated meteorological stations; Based on this, a distributed photovoltaic power short-term prediction method using JSD Informer model was proposed; By analyzing the numerical weather forecast of meteorological stations around the photovoltaic power station, the mapping relationship between the power generation of the photovoltaic power station and its geographic information; Accurately quantify the distribution differences of multi-source meteorological data, integrate numerical weather forecasts from multi-source meteorological stations, and calculate meteorological information data for the location of distributed photovoltaic power stations; Combining the fused meteorological information and utilizing the Johnson Shannon divergence to optimize the sparse self attention mechanism of the Inframer network, a distributed photovoltaic power generation short-term prediction model is constructed; Comparative experimental analysis shows that the proposed method has high prediction accuracy and good robustness. The root mean square error and average absolute error of distributed photovoltaic power prediction calculation are as low as 0.10 and 0.06, respectively.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-07-08
  • 最后修改日期:2025-08-20
  • 录用日期:2025-08-22
  • 在线发布日期:
  • 出版日期:
文章二维码