基于多任务联合学习的多舰船目标跟踪方法
DOI:
CSTR:
作者:
作者单位:

1.中国电子科技集团公司第七研究所;2.中国电子科技集团公司第五十四研究所

作者简介:

通讯作者:

中图分类号:

TP75

基金项目:


Multi Ship Target Tracking Method in Complex Backgrounds
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    利用高分辨率卫星视频数据对大范围海上目标进行实时检测和跟踪,在国防军事、公共安全等领域具有重要应用。然而,现有目标跟踪研究主要集中在自然图像领域,且主要针对单目标跟踪问题。针对海面背景复杂、舰船尺寸多样且部分目标占像素较少、目标间的交叉运动容易出现目标混淆和跟踪丢失等问题,提出了基于一个基于点表示的目标检测和身份重识别的多任务学习模型,在CenterNet网络中使用多层次特征聚合网络来提取多尺度特征,并以目标中心点的识别和定位来实现目标检测,避免了anchor框和非极大值机制的计算开销。此外,采用目标身份分类和多任务学习损失自适应平衡方法,解决了舰船目标检测和身份重识别任务的特征学习目标冲突问题。通过自建目标跟踪数据集,在24段视频的测试下,多目标跟踪系统的目标检测召回率、目标检测准确率、多目标跟踪召回率、多目标跟踪精确率分别达到88.3%、95.9%、90.2%和98.0%,较好地实现了目标跟踪。

    Abstract:

    The use of high-resolution satellite video data for real-time detection and tracking of large-scale maritime targets has important applications in national defense, military, public safety, and other fields. However, existing research on object tracking mainly focuses on the field of natural images and mainly addresses single object tracking problems. A multi task learning model based on point representation for object detection and identity re-identification is proposed to address the problems of complex sea surface backgrounds, diverse ship sizes, and small pixel occupancy of some targets. The model uses a multi-level feature aggregation network in the CenterNet network to extract multi-scale features, and achieves object detection through the recognition and localization of the target center point, avoiding the computational overhead of anchor and non-maximum suppression. In addition, the use of target identity classification and multi task learning loss adaptive balancing methods has solved the problem of feature learning target conflicts in ship target detection and identity re-identification tasks. By building a target tracking dataset and testing it on 24 videos, the target detection recall rate, target detection accuracy rate, multi-target tracking recall rate, and multi-target tracking accuracy rate of the multi-target tracking system reached 88.3%, 95.9%, 90.2%, and 98.0%, respectively, achieving good target tracking.

    参考文献
    相似文献
    引证文献
引用本文

陈旸,刘宇,王敏,常晓宇,陈金勇.基于多任务联合学习的多舰船目标跟踪方法计算机测量与控制[J].,2025,33(9):318-325.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-07-07
  • 最后修改日期:2025-07-31
  • 录用日期:2025-08-01
  • 在线发布日期: 2025-09-26
  • 出版日期:
文章二维码