基于深度Q网络的速度曲线优化方法研究
DOI:
CSTR:
作者:
作者单位:

1.长沙穗城轨道交通有限公司;2.通号城市轨道交通技术有限公司;3.中南大学交通运输工程学院

作者简介:

通讯作者:

中图分类号:

U268.4

基金项目:


Research on Speed Profile Optimization Method Based on Deep Q-Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着国内地铁运营规模的不断扩大,地铁列车电能消耗过大的问题更加凸显;通过对列控系统的速度曲线进行优化,可以减小列车运行时因克服阻力做功和制动过程造成的机械能损失,提高牵引能效;AI算法和计算机设备的飞速发展为速度曲线优化算法的革新带来了新的机遇,基于此,提出了基于深度Q网络(Deep Q-Network, DQN)算法的速度曲线优化方法:首先构建速度曲线优化的寻优框架,其次应用强化学习架构对智能体进行迭代优化,最后通过DQN算法求解出具有节能特性的速度曲线;在MATLAB平台上搭建了仿真环境,并对传统算法和本文算法的节能效果进行了仿真对比,结果显示,本文算法相比传统算法实现了约5%~7%的节能。

    Abstract:

    With the continuous expansion of domestic metro operation scales, the issue of excessive power consumption by metro trains has become increasingly prominent. By optimizing the speed profiles of train control systems, mechanical energy losses incurred during train operation—due to overcoming resistance and the braking process—can be reduced, thereby improving traction energy efficiency. The rapid development of AI algorithms and computing equipment has brought new opportunities for the innovation of speed profile optimization algorithms. Based on this, a speed profile optimization method using the Deep Q-Network (DQN) algorithm is proposed: First, an optimization framework for speed profile optimization is constructed. Second, a reinforcement learning architecture is applied to iteratively optimize the intelligent agent. Finally, the DQN algorithm is used to solve for a speed profile with energy-saving characteristics. A simulation environment is established on the MATLAB platform, and a comparative simulation of the energy-saving effects between the traditional algorithm and the proposed algorithm is conducted. The results show that the proposed algorithm achieves approximately 5%–7% energy savings compared to the traditional algorithm.

    参考文献
    相似文献
    引证文献
引用本文

孔文龙,柏友运,向国良,范子寅.基于深度Q网络的速度曲线优化方法研究计算机测量与控制[J].,2026,34(2):182-188.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-06-09
  • 最后修改日期:2025-09-11
  • 录用日期:2025-09-15
  • 在线发布日期: 2026-02-09
  • 出版日期:
文章二维码