基于DBSCAN的水轮发电机碳刷温漂故障诊断方法
DOI:
CSTR:
作者:
作者单位:

东方电气集团东方电气有限公司

作者简介:

通讯作者:

中图分类号:

基金项目:

华能澜沧江公司水电厂智慧检修系统建设(P0202302230106);


Fault Diagnosis Method for Hydro-generator Brush Temperature Drift Based on DBSCAN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对水轮发电机碳刷温度传感器因长期运行引发的温漂故障诊断难题,提出一种基于DBSCAN密度聚类与多传感器协同校验的故障诊断方法。通过对比K-means、层次聚类、孤立森林与DBSCAN算法在三维特征空间(转速、电流密度、温度)中的误判率、计算效率以及算法参数和鲁棒性,验证了DBSCAN算法在处理三维数据的适用性(误判率低于18.7%、计算效率达0.41 s/千点);采用小波变换对历史工况数据降噪处理,结合动态阈值预警机制与邻近传感器协同校验,实现了对传感器缓变偏移的精准诊断;实验模拟0.5 ℃/h温度偏移及±10 ℃噪声干扰条件下,故障簇均值差异达12.23 ℃,超出阈值触发预警,并通过停机标定验证诊断准确性;该方法解决了传统方法对缓变故障敏感度不足的缺陷,经实际测试满足水轮发电机复杂工况下的实时监测需求,为工业设备智能化状态监测提供了潜在可行的技术方案。

    Abstract:

    Addressing the challenge of diagnosing temperature drift faults in hydro-generator brush temperature sensors caused by long-term operation, a fault diagnosis method based on DBSCAN density clustering and multi-sensor collaborative verification is proposed.By comparing the misjudgment rates, computational efficiency, algorithm parameters, and robustness of K-means, hierarchical clustering, isolation forest, and DBSCAN algorithms in a three-dimensional feature space (rotational speed, current density, temperature), the applicability of DBSCAN for processing 3D data was verified (misjudgment rate below 18.7%, computational efficiency reaching 0.41 s/thousand points).Wavelet transform was applied to denoise historical operational data. Combined with a dynamic threshold early-warning mechanism and collaborative verification from adjacent sensors, this achieved precise diagnosis of gradual sensor offset faults.Under simulated conditions of 0.5°C/h temperature drift and ±10°C noise interference, the mean difference between fault clusters reached 12.23°C, exceeding the threshold to trigger warnings. Diagnostic accuracy was confirmed through shutdown calibration.This method overcomes the insufficient sensitivity of traditional approaches to gradual faults. Field tests demonstrate its suitability for real-time monitoring under complex hydro-generator operating conditions, providing a potentially viable technical solution for intelligent condition monitoring of industrial equipment.

    参考文献
    相似文献
    引证文献
引用本文

李若松,王金鹏,周军长.基于DBSCAN的水轮发电机碳刷温漂故障诊断方法计算机测量与控制[J].,2025,33(8):102-111.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-05-16
  • 最后修改日期:2025-06-09
  • 录用日期:2025-06-09
  • 在线发布日期: 2025-09-05
  • 出版日期:
文章二维码