基于 CNN-RNN模型的巡检机器人位姿校正与建图技术研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Research on Pose Correction and Mapping Techniques for Inspection Robots Based on CNN-RNN Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有巡检机器人位姿校正精度不足及环境建图效果不佳的问题,提出一种融合多传感器数据与深度学习的位姿校正与定位建图技术,以提高巡检机器人的定位精度与作业效率。采用摄像头、轮编码器与陀螺仪采集位姿数据,构建CNN-RNN复合模型(3×3卷积核、20个卷积层、5层RNN隐含层)进行异构数据融合;基于SIFT算法提取环境图像特征点,通过变换矩阵配准图像,利用BiGEMAP生成平面栅格地图;引入动态概率模型和改进支持向量机优化区域通行判定。消融实验表明,CNN-RNN模型在26次迭代后位姿校正准确率达99.5%;图像拼接重叠区域比例最低为1.02%,区域通行误判率降至1%,所建地图与实际环境SSIM值达1.0。通过融合CNN-RNN模型与多传感器数据,显著提升了位姿校正精度与环境建图质量,为复杂场景下的巡检机器人自主导航提供了可靠技术支撑。

    Abstract:

    To address the low accuracy of pose correction and poor performance of environmental mapping in existing inspection robots, this study proposes a novel technique integrating multi-sensor data and deep learning to enhance positioning accuracy and operational efficiency.Pose data from cameras, wheel encoders, and gyroscopes were fused using a CNN-RNN composite model (3×3 convolution kernels, 20 convolutional layers, 5 RNN hidden layers). Environmental images were processed via SIFT feature extraction, transformation matrix registration, and BiGEMAP-based planar grid map construction. Dynamic probabilistic models and improved support vector machines (SVM) were applied for passable region classification.Ablation experiments showed that the CNN-RNN model achieved 99.5% pose correction accuracy after 26 iterations. The minimum overlapping ratio of stitched images was 1.02%, with a passability misjudgment rate of 1%. The constructed map achieved an SSIM value of 1.0 compared to ground truth.The integration of CNN-RNN and multi-sensor data significantly improves pose correction precision and mapping reliability, offering a robust solution for autonomous navigation of inspection robots in complex environments.

    参考文献
    相似文献
    引证文献
引用本文

张焰.基于 CNN-RNN模型的巡检机器人位姿校正与建图技术研究计算机测量与控制[J].,2025,33(7):295-303.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-05-09
  • 最后修改日期:2025-06-30
  • 录用日期:2025-06-05
  • 在线发布日期: 2025-07-16
  • 出版日期:
文章二维码