基于图像拼接的无人机视角目标检测系统设计与实现
DOI:
CSTR:
作者:
作者单位:

国营洛阳丹城无线电厂

作者简介:

通讯作者:

中图分类号:

TN911

基金项目:


Design and Implementation of a Target Detection System from UAV Perspective Based on Image Stitching
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目标检测技术在无人机遥感、工业缺陷检测及生物医学分析等领域具有重要应用价值,但传统方法受限于相机焦距与传感器性能,难以实现大视野场景下的高效目标识别。为解决这一问题,研究提出了一种融合图像拼接与深度学习的目标检测方法,通过将多幅具有相同特征点的局部图像拼接为全景图,构建了宽视野检测的方法。该方法采用基于深度学习的方法实现图像精准拼接,结合基于深度学习的检测网络,并创新性地引入自适应滑动窗口机制以优化检测精度。实验结果表明,该系统在无人机航拍数据集上实现了视野范围扩大3倍以上,目标检测数量提升50%,检测速度相比于Yolov8-L提升了3.4 ms,同时通过滑动窗口策略使检测准确率提高12%。实际应用表明,该方法可有效满足大范围场景下的多目标检测需求,配套开发的人机交互界面进一步提升了系统实用性,为宽视野目标检测提供了完整的技术解决方案。

    Abstract:

    Target detection is crucial in fields such as unmanned aerial vehicle (UAV) remote sensing, industrial defect inspection and biomedical analysis. However, conventional methods are often limited by camera focal length and sensor capabilities, which hinders their effectiveness in scenarios with a large field of view (FoV). This study therefore proposes a novel target detection framework that integrates image stitching with deep learning techniques to address this challenge. By aligning and stitching together multiple local images that share common feature points to create a panoramic view, the proposed method enables target detection over a wide FoV. A deep learning–based image stitching algorithm ensures spatial consistency, while a detection network integrated with an adaptive sliding window mechanism enhances detection precision. Experimental evaluations on UAV aerial datasets demonstrate that the proposed system achieves a threefold expansion in FoV, a 50% increase in detected targets and improves detection speed by 3.4 ms compared to YOLOv8-L. Furthermore, the adaptive sliding window contributes to a 12% improvement in detection accuracy. Real-world applications confirm the effectiveness of the proposed approach for large-scale, multi-target detection tasks. Developing a user-friendly human–computer interaction interface improves the system's usability further, offering a comprehensive and practical solution for wide FoV target detection.

    参考文献
    相似文献
    引证文献
引用本文

姜飞,朱月强,刘永微,马文斌,陈启冠.基于图像拼接的无人机视角目标检测系统设计与实现计算机测量与控制[J].,2025,33(10):64-71.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-05-09
  • 最后修改日期:2025-06-05
  • 录用日期:2025-06-05
  • 在线发布日期: 2025-10-27
  • 出版日期:
文章二维码