空间域与频域特征融合的电力安全装备检测方法
DOI:
CSTR:
作者:
作者单位:

国网浙江省电力有限公司宁海县供电公司

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

宁波永耀电力投资集团科技项目(CF058211002024001)


Power Safety Equipment Detection Method Based on Spatial and Frequency Domain Feature Fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    电力安全装备检测对保障作业人员人身安全、降低事故风险和经济损失至关重要。针对电力作业场景背景复杂和样本不均衡导致检测精度不高的问题,基于RT-DETR提出一种融合空间域与频域特征的双域门控融合检测方法(Dual-Domain Gate Fusion DEtection TRansformer,D2GF-DETR)。首先,为了解决传统的卷积神经网络在复杂背景下容易受到干扰导致细节信息的丢失的问题,提出一种双域特征增强模块,通过融合空间域和频域特征,利用傅里叶变换抑制背景噪声,增强模型对细节信息和边缘的感知能力。其次,设计一种聚焦融合模块,结合深度可分离卷积和门控卷积,聚焦于关键区域的特征,有效地优化了多尺度特征融合中噪声干扰的问题。最后,提出一种时序平滑滑动损失函数,通过动态调整样本权重来改善困难样本的学习效果,解决了样本时序变化和动态特性可能导致的检测结果的不稳定性。实验结果表明,和基线模型RT-DETR相比,所提方法在绝缘手套与工作服数据集上的mAP50分别提升了3.1和2.4个百分点,在mAP50-95分别提升了2.8和1.8个百分点。所提出的D2GF-DETR在两个数据集上的检测精度较现有主流方法有显著提升,同时保持了较低计算开销。

    Abstract:

    Power safety equipment detection is essential for ensuring worker safety, reducing the risk of accidents, and minimizing economic losses. To address the challenges posed by complex backgrounds and imbalanced sample distributions in power operation scenarios, a dual-domain gate fusion detection method (Dual-Domain Gate Fusion DEtection TRansformer, D2GF-DETR) that integrates spatial and frequency domain features is proposed based on RT-DETR. Specifically, a Dual-Domain Feature Enhancement module was designed to mitigate interference caused by complex backgrounds, which often leads to the loss of fine details in conventional convolutional neural networks. In this module, spatial and frequency domain features are integrated, and the Fourier transform is employed to suppress background noise, thereby enhancing the model’s sensitivity to detailed and edge information. In addition, a Focused Fusion module was introduced, where depthwise separable convolutions are combined with gated convolutions to concentrate on key regional features, effectively reducing noise interference during multi-scale feature fusion. Furthermore, a Temporally Smoothed Slide Loss function was proposed to dynamically reweight samples, thereby improving the learning of hard examples and enhancing detection stability under temporal and dynamic variations. Experimental results demonstrate that, compared with the baseline RT-DETR, the proposed method achieved improvements of 3.1% and 2.4% in mAP50, and 2.8% and 1.8% in mAP50-95 on the insulated gloves and workwear datasets, respectively. The proposed D2GF-DETR yielded superior detection performance over existing mainstream methods while maintaining low computational overhead.

    参考文献
    相似文献
    引证文献
引用本文

周龙伟,郭鹏程,张仕勇,田斌,袁天霖.空间域与频域特征融合的电力安全装备检测方法计算机测量与控制[J].,2025,33(7):139-145.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-05-07
  • 最后修改日期:2025-05-28
  • 录用日期:2025-05-29
  • 在线发布日期: 2025-07-16
  • 出版日期:
文章二维码