基于GINODE模型的交通流量结构辨识与时序建模研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

2024年陕西国防工业职业技术学院科研计划项目(课题编号:Gfy-24-31)


Traffic Flow Structure Identification and Temporal Modeling Based on the GINODE Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    时空预测在众多应用领域中具有重要研究价值,而交通流量预测作为其中的典型代表,因其复杂的远程时空相关性而成为一项极具挑战性的任务。现有方法通常通过浅层图卷积网络和时间特征提取模块分别建模空间和时间依赖性,但其对同构图的区分能力不足。同时现有方法忽视了空间连接与时序依赖特征的结合,而时空特征对全面建模交通网络至关重要。为克服上述局限性,提出了一种基于图同构常微分方程网络(GINODE)以捕捉复杂的时空动态关系,引入图同构网络(GIN)从而实现深层网络的构建及时空特征的同步建模。结果表明,所提出的 GINODE 模型在性能上优于当前最先进的基线方法。

    Abstract:

    Spatio-temporal forecasting holds significant research value across numerous application domains, with traffic flow forecasting standing out as a typical representative due to its complex long-range spatio-temporal correlations, making it a highly challenging task. Existing methods typically model spatial and temporal dependencies separately using shallow graph convolutional networks and temporal feature extraction modules, but they often lack the ability to distinguish between isomorphic graphs. Furthermore, current approaches overlook the integration of spatial connections and temporal dependency features, which is crucial for comprehensively modeling traffic networks.To overcome these limitations, a novel Graph Isomorphic Neural Ordinary Differential Equation Network (GINODE) is proposed to capture the complex spatio-temporal dynamic relationships. By introducing Graph Isomorphism Networks (GIN), the model achieves the construction of deep networks and the synchronous modeling of spatio-temporal features. Experimental results demonstrate that the proposed GINODE model outperforms state-of-the-art baseline methods in terms of performance.

    参考文献
    相似文献
    引证文献
引用本文

范宏程,刘锦.基于GINODE模型的交通流量结构辨识与时序建模研究计算机测量与控制[J].,2025,33(10):305-312.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-05-06
  • 最后修改日期:2025-06-04
  • 录用日期:2025-06-05
  • 在线发布日期: 2025-10-27
  • 出版日期:
文章二维码