基于图池化优化的点云语义分割方法研究
DOI:
CSTR:
作者:
作者单位:

延安大学 数学与计算机科学学院

作者简介:

通讯作者:

中图分类号:

TP391.98

基金项目:

国家自然科学基金(62271393)、陕西省自然科学基础研究计划项目(2023-JC-QN-0744)


Research on Point Cloud Semantic Segmentation Method Based on Graph Pooling Optimization
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对基于编码器-解码器架构的点云分割方法在几何细节与上下文信息利用方面存在的不足,对点云语义分割中的特征流失问题进行了研究。通过分析原始点云中几何细节与深层语义特征的互补关系,构建了多层次特征表示体系。采用边缘保持图池化(EGP)模块和边缘保持图反池化(EGU)模块相结合的技术方案,其中EGP模块通过几何约束机制实现边缘结构特征的显式保留,EGU模块利用保留的边缘特征指导特征重建,形成闭环优化系统。实验测试在S3DIS基准数据集上进行,结果表明该方法在Area-5测试集上实现了73.8%的平均类别准确率(mAcc),较现有方法有显著提升。消融实验验证了EGP和EGU模块的有效性,该方法能够满足三维场景理解中对精细几何特征保持的需求,展现了其在点云分语义割上的应用潜力。

    Abstract:

    To address the limitations of point cloud segmentation methods based on the encoder-decoder architecture in terms of utilizing geometric details and contextual information, a point cloud semantic segmentation method based on graph pooling optimization is proposed to investigate the issue of feature loss. By analyzing the complementary relationship between geometric details and deep semantic features in the raw point cloud, a multi-level feature representation system is constructed. A technical solution combining the Edge-Guided Graph Pooling (EGP) module and the Edge-Guided Graph Unpooling (EGU) module is adopted. The EGP module explicitly retains edge structural features through a geometric constraint mechanism, while the EGU module guides feature reconstruction using the retained edge features, forming a closed-loop optimization system. Experimental tests are conducted on the S3DIS benchmark dataset, and the results show that the proposed method achieves a mean class accuracy (mAcc) of 73.8% on the Area-5 test set, which is a significant improvement over existing methods. Ablation experiments validate the effectiveness of the EGP and EGU modules. The method is capable of meeting the demand for fine geometric feature preservation in 3D scene understanding and demonstrates its potential for application in point cloud semantic segmentation.

    参考文献
    相似文献
    引证文献
引用本文

徐雪丽,王红珍,王敬禹.基于图池化优化的点云语义分割方法研究计算机测量与控制[J].,2025,33(10):298-304.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-04-29
  • 最后修改日期:2025-06-02
  • 录用日期:2025-06-03
  • 在线发布日期: 2025-10-27
  • 出版日期:
文章二维码