基于自适应先验增强的智能Turbo译码算法
DOI:
CSTR:
作者:
作者单位:

中国电子科技集团公司第五十四研究所 先进通信网全国重点实验室

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

先进通信网全国重点实验室基金(SXX24104X030、SCX23641X011)


Intelligent Turbo Decoding Algorithm Based on Adaptive Priori Enhancement
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统Turbo信道译码算法误码率性能不足的问题,采用一种基于模型与数据双驱动的智能Turbo信道译码方法;基于传统Max-Log-MAP译码算法,将迭代过程深度展开,重构为多层级联的神经网络架构,提出自适应先验信息增强APETurbo译码网络模型,在模型中设计APENet神经子网络;该子网络采用可学习权重线性调整外部信息,并基于全连接层与非线性激活函数进一步提取非线性特征,利用可训练混合系数结合线性计算结果和非线性提取结果,构建残差连接结构,实现对先验信息的更精准估计;设计基于归一化的概率空间均方误差损失函数进行优化;仿真结果表明,在AWGN信道下,所提算法在误码率为 时比Max-Log-MAP算法误码率性能提升约0.4dB。

    Abstract:

    Aiming at the problem of insufficient BER performance of traditional Turbo channel decoding algorithms, an intelligent Turbo channel decoding method based on dual-driven model and data is adopted; based on the traditional Max-Log-MAP decoding algorithm, the iterative process is expanded in depth and reconfigured as a multilayered cascade neural network architecture, and an adaptive a-priori information-enhanced APETurbo decoding network model is proposed, and an APENet neural subnetwork is designed in the model. Design APENet neural sub-network; the sub-network adopts learnable weights to linearly adjust the external information, and further extracts nonlinear features based on the fully connected layer with nonlinear activation function, and constructs a residual connection structure by using trainable hybrid coefficients combining linear computation results and nonlinear extraction results, to achieve a more accurate estimation of the a priori information; design the probability space mean-square error loss function based on normalization Simulation results show that the proposed algorithm improves the BER performance of Max-Log-MAP algorithm by about 0.4dB over Max-Log-MAP algorithm at a BER of 10 under AWGN channel.

    参考文献
    相似文献
    引证文献
引用本文

李若冰,刘丽哲,杨朔,李勇,王斌.基于自适应先验增强的智能Turbo译码算法计算机测量与控制[J].,2025,33(10):280-288.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-04-14
  • 最后修改日期:2025-05-21
  • 录用日期:2025-05-21
  • 在线发布日期: 2025-10-27
  • 出版日期:
文章二维码