基于改进NSGA-III三阶协同优化模型的航天测试流程优化方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

本文系2024年度吉林省职业教育科研项目(2024XHZ017)


Enhanced NSGA-III Three-Stage Collaborative Control Model and Its Application in Aerospace Testing Processes
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对航天测试流程自动化中多目标优化问题的高维性、强约束性与计算实时性矛盾,研究提出一种改进NSGA-III的三阶协同控制模型。通过构建“参数初始化控制-评估模态切换-在线参数调节”三阶协同控制架构,实现多目标优化的全流程动态调控:首先,基于非对称拉丁超立方采样(LHS)对关键测试参数实施区间密度控制,生成领域适配的均匀初始种群,突破传统随机初始化在高维约束空间的控制盲区;其次,设计Kriging代理驱动的响应面控制机制,通过动态高斯过程建模将评估过程分解为高保真验证(30%个体)与代理预测(70%个体)双模态,结合预测方差实时修正交叉变异方向,减少70%计算开销;最后,嵌入混合参数控制策略,通过离线的网格搜索预选与在线性能反馈调节,实现种群规模、交叉概率等6维参数的闭环优化。实验表明,该模型间距指标(SP)降幅达70.6%,最终SP值(0.162)为对比算法的21.8%-27.4%,超体积(HV)与反向世代距离(IGD)均值分别为0.928与0.048,较传统方法提升5.0%-13.7%与降低26.2%-50.0%;实际部署中,模型平均耗时47.90小时,资源消耗率78.20%,功能覆盖率94.90%,约束满足率97.80%,较对比方法显著优化。研究验证了三阶协同控制在复杂航天测试场景下的控制鲁棒性与工程适用性,为高维强约束任务的实时决策提供了新思路。

    Abstract:

    Aiming at the challenges of high dimensionality, strong constraints and high computational cost of multi-objective optimisation problems in aerospace test process automation, the study proposes an intelligent generative model based on the Improved Undominated Sorting Genetic Algorithm III. The model generates domain-adapted uniform initial populations by implementing asymmetric dense sampling of key test parameters through Latin hypercubic sampling; meanwhile, the Kriging agent model is introduced to dynamically construct the response surface of the objective function to reduce the overhead of real evaluation. The results show that: during the iteration process, the spacing index of the improved model is reduced from 0.892 to 0.162, with a reduction of 70.6%, which is significantly better than the comparison algorithm (with a reduction of 34.1%-44.0%), proving that it has leading efficiency in the enhancement of the uniformity of the distribution of the solution set; the mean values of the model"s hypervolume and inverse generational distances are 0.928 and 0.048, which are respectively 5.0% - 13.7% and 26.7% lower than that of its method. 13.7% and 26.2%-50.0%, respectively; the actual deployment data shows that the model consumes 47.90 hours on average, the resource consumption rate is 78.20%, and the function coverage rate is 94.90%, which is 5.2%-14.6% less than the comparative algorithms in terms of time consumed, 3.0%-7.7% more in terms of resource utilisation rate, and 1.8%-5.2% more in terms of coverage rate; the study provides efficient and reliable solutions for the automation of the aerospace testing process. The research provides an efficient and reliable solution for the automation of aerospace testing process and lays the foundation for the development of aerospace engineering.

    参考文献
    相似文献
    引证文献
引用本文

周岩,刘涛,侯洪波,宋微,隋建成,赵大志.基于改进NSGA-III三阶协同优化模型的航天测试流程优化方法计算机测量与控制[J].,2025,33(9):109-117.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-04-14
  • 最后修改日期:2025-05-28
  • 录用日期:2025-05-23
  • 在线发布日期: 2025-09-26
  • 出版日期:
文章二维码