IRe-Net:一种改进RetinaNet的绝缘子缺陷检测方法
DOI:
CSTR:
作者:
作者单位:

三峡大学电气与新能源学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(52407118)


IRe-Net: An Improved RetinaNet for Insulator Defect Detection Method
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对航拍绝缘子图像中背景复杂、目标尺度多样以及检测目标较小导致的检测精度低的问题,改进RetinaNet,提出一种绝缘子缺陷检测方法IRe-Net。通过构建自适应卷积模块优化ResNet网络,采用可变形卷积增强小目标缺陷的捕获能力;设计一种特征增强网络CeBiFPN,利用坐标注意机制对BiFPN进行改进,增强对多尺度目标检测能力;提出Focal-CIoU损失函数,引入CIoU Loss优化损失函数,优化模型收敛过程,提升复杂场景下缺陷检测的能力。实验结果表明,提出的IRe-Net在绝缘子缺陷检测中的平均准确率达到91.46%,可有效提升复杂场景下航拍绝缘子缺陷检测的准确性和鲁棒性,满足智能电网安全监测需求。

    Abstract:

    To address the challenges of low detection accuracy in aerial insulator images due to complex backgrounds, varied target scales, and small target sizes, a method for insulator defect detection called IRe-Net is proposed by improving RetinaNet. IRe-Net optimizes the ResNet network through an adaptive convolution module and enhances small target defect capture capabilities using deformable convolutions. A feature enhancement network, CeBiFPN, is designed by improving BiFPN with a coordinate attention mechanism to boost multi-scale target detection performance. Additionally, a Focal-CIoU loss function is introduced to optimize the loss function and improve model convergence, enhancing defect detection ability in complex scenes. Experimental results show that the proposed IRe-Net achieves an average accuracy of 91.46% in insulator defect detection, effectively improving detection accuracy and robustness in aerial insulator defect detection in complex scenarios, meeting the safety monitoring needs of smart grids.

    参考文献
    相似文献
    引证文献
引用本文

舒征宇,张紫格,任冠臣,刘颂凯,姚钦,童华敏. IRe-Net:一种改进RetinaNet的绝缘子缺陷检测方法计算机测量与控制[J].,2025,33(10):46-54.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-04-07
  • 最后修改日期:2025-05-12
  • 录用日期:2025-05-13
  • 在线发布日期: 2025-10-27
  • 出版日期:
文章二维码