基于深度学习的轻量化无人机航拍小目标智能检测系统设计
DOI:
CSTR:
作者:
作者单位:

中国电子科技集团公司第五十二研究所

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在无人机航拍过程中,无人机以俯视的视角进行监视拍摄,特征提取角度较单一,且无人机离地面距离较远,待检测目标相对呈现出小目标的特点,受到背景遮挡时,在检测的时候容易出现误检的情况。因此,设计一种基于深度学习的轻量化无人机航拍小目标智能检测系统。硬件方面设计了无人机航拍装置,包括飞控模块、舵机云台视频系统、地面遥控器和手持移动终端设备,确保图像采集的稳定性和高效性;并采用高接收灵敏度、低功耗的2.4GHz传输器设计图像传输设备,保证图像的有效传输范围和稳定性。软件方面运用六方向梯度决策法建立背景抑制模型,并引入一个加权函数,以此处理无人机航拍图像,消除复杂背景对小目标智能检测的影响,提高检测精度。针对背景抑制处理后的图像进行划分,并通过判定分析筛选出属于感兴趣区域的若干个子区域,再展开拼接处理得到图像感兴趣区域识别结果。结合UavdNet网络和CASA注意力机制,对感兴趣区域图像进一步分析,生成多尺度特征图像。利用融合后的Stem模块和ShuffleNet V2单元对YOLOv5骨干网络进行重构,建立基于深度学习的轻量化智能检测模型,将生成多尺度特征图像输入模型中进行学习,即可得出小目标检测结果。测试结果表明:系统输出的智能检测结果AP值大于0.9,可以实现对小目标的准确描述。

    Abstract:

    In the process of drone aerial photography, the drone monitors and shoots from a top-down perspective, with a relatively single feature extraction angle. Moreover, the drone is far away from the ground, and the target to be detected appears relatively small. When it is obstructed by the background, it is prone to false detection during detection. Therefore, design a lightweight unmanned aerial vehicle aerial small target intelligent detection system based on deep learning. In terms of hardware, a drone aerial photography device has been designed, including a flight control module, a servo gimbal video system, a ground remote control, and a handheld mobile terminal device, to ensure the stability and efficiency of image acquisition; And adopt a 2.4GHz transmitter with high receiving sensitivity and low power consumption to design image transmission equipment, ensuring the effective transmission range and stability of images. In terms of software, a six direction gradient decision method is used to establish a background suppression model, and a weighting function is introduced to process unmanned aerial vehicle aerial images, eliminate the influence of complex backgrounds on intelligent detection of small targets, and improve detection accuracy. Divide the image after background suppression processing, and select several sub regions belonging to the region of interest through judgment analysis. Then, perform stitching processing to obtain the recognition result of the region of interest in the image. Combining UavdNet network and CASA attention mechanism, further analyze the region of interest image and generate multi-scale feature images. By using the fused Stem module and ShuffleNet V2 unit to reconstruct the YOLOv5 backbone network, a lightweight intelligent detection model based on deep learning is established. The generated multi-scale feature images are input into the model for learning, and small object detection results can be obtained. The test results indicate that the AP value of the intelligent detection output by the system is greater than 0.9, which can achieve accurate description of small targets.

    参考文献
    相似文献
    引证文献
引用本文

史亚锋,韩可伟,高树论,吕春雷.基于深度学习的轻量化无人机航拍小目标智能检测系统设计计算机测量与控制[J].,2025,33(9):100-108.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-03-07
  • 最后修改日期:2025-04-16
  • 录用日期:2025-04-21
  • 在线发布日期: 2025-09-26
  • 出版日期:
文章二维码