基于机器视觉的羽毛分拣系统的设计与实现
DOI:
CSTR:
作者:
作者单位:

青岛科技大学 信息科学技术学院

作者简介:

通讯作者:

中图分类号:

TP391.413 ?

基金项目:

国家自然基金面上项目(22374086);山东省2023年本科教学改革研究重点项目(Z2023152)


Design and Implementation of a Feather Sorting System Based on Machine Vision
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在羽毛生产过程中,羽毛经过洗净、烘干后,针对里面掺杂的杂色羽毛,目前现有的拣出方法效率较低,人工筛检的成本过高,导致生产的羽毛品质受限制;针对上述问题,对ResNet-18、YOLOv5和OpenCV等技术方案进行了实验对比及分析,并设计并实现了一个基于机器视觉的羽毛分拣系统;详细介绍了系统硬件和软件的设计与实现过程,包括单片机和继电器、电磁阀、气泵等硬件系统设计,以及HSV提取、运动检测、颜色识别、数据通信、气泵控制和远程监控等软件模块的具体实现;结合图像处理与机器视觉相关算法,设计并实现了基于气泵控制的羽毛自动化分拣系统。

    Abstract:

    During feather production, after cleaning and drying the feathers, mixed-colored feathers often appear. Existing sorting methods are inefficient, and manual screening is costly, which limits the quality of the produced feathers. To address this issue, experiments were conducted to compare and analyze technologies such as ResNet-18, YOLOv5, and OpenCV. Based on the results, a machine vision-based feather sorting system was designed and implemented. The design and implementation process of both the hardware and software of the system is described in detail. The hardware design includes the microcontroller, relays, solenoid valves, and air pumps. The software modules include HSV extraction, motion detection, color recognition, data communication, air pump control, and remote monitoring. By integrating image processing and machine vision algorithms, an automated feather sorting system based on air pump control was designed and implemented.

    参考文献
    相似文献
    引证文献
引用本文

金雨璇,许宗华,马兴录,马圣洁.基于机器视觉的羽毛分拣系统的设计与实现计算机测量与控制[J].,2025,33(9):245-253.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-03-04
  • 最后修改日期:2025-04-15
  • 录用日期:2025-04-21
  • 在线发布日期: 2025-09-26
  • 出版日期:
文章二维码