地下工程场景下基于改进随机森林的滑坡预测方法
DOI:
CSTR:
作者:
作者单位:

中国人民解放军93204部队

作者简介:

通讯作者:

中图分类号:

P642.2;TP391.4;TP183

基金项目:


Landslide prediction method based on improved random forest in underground engineering scenarios
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决传统滑坡预测方法依赖专家经验、难以适应复杂地下工程场景的问题,研究提出一种改进随机森林方法以提升预测精度与泛化能力。通过专业设备采集地下工程滑坡关键参数,经不完备数据处理构建高质量数据集。对比分析k近邻、支持向量机、决策树等分类器的全局与局部分类性能,确定随机森林为最优基础分类器。创新性引入多决策树相关性度量方法,以特征空间内积计算量化决策树间冗余性,通过最优阈值筛选构建改进随机森林。实验表明,改进随机森林的分类精度达93.05%,其Precision、Recall和F1-score指标在不同标签数据上均保持最高稳定性,验证了改进神经网络在整体与局部分类性能上的双重优势。实际工程应用验证了该方法在多维复杂场景下的有效性,为地质灾害智能化预测提供了可靠解决方案。

    Abstract:

    To address the limitations of traditional landslide prediction methods that rely on expert experience and struggle to adapt to complex underground engineering scenarios, an improved random forest method was proposed to enhance prediction accuracy and generalization capability. Key parameters of landslides in underground engineering environments were collected using specialized equipment, and a high-quality dataset was created through incomplete data processing. By comparing the global and local classification performance of classifiers such as k-nearest neighbors, support vector machines, and decision trees, random forest was identified as the optimal base classifier. An innovative multi-decision tree correlation measurement method was introduced, which quantifies redundancy between trees through inner product calculations in feature space and optimizes the model by threshold filtering. Experimental results demonstrated that, the improved random forest achieved a classification accuracy of 93.05%, with Precision, Recall, and F1-score maintaining the highest stability across different labeled data, validating its dual advantages in both global and local classification performance. Practical engineering applications confirmed its effectiveness in multidimensional complex scenarios, providing a reliable solution for intelligent geological hazard prediction.

    参考文献
    相似文献
    引证文献
引用本文

许文学,陈金磊,陈宗清,柳倩男,李玉.地下工程场景下基于改进随机森林的滑坡预测方法计算机测量与控制[J].,2025,33(7):105-113.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-02-25
  • 最后修改日期:2025-03-18
  • 录用日期:2025-03-19
  • 在线发布日期: 2025-07-16
  • 出版日期:
文章二维码