基于扩展长短期记忆网络的电力系统短期负荷预测
DOI:
CSTR:
作者:
作者单位:

苏州科技大学

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(61672371, 61803279, 61876217, 62203316);江苏省高等学校基础科学(自然科学) 基金项目(21KJB120010); 国家重点研发计划课题(2020YFC2006602)。


Short-term load forecasting of power system based on extended long and short-term memory network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    短期负荷预测在电力系统的运行与规划中扮演着至关重要的角色,准确地预测负荷变化不仅能够有效支持电网的调度优化、提升电网可靠性,而且可以为决策者提供科学依据以降低运营成本和提高系统效率。如何构建具有柔性特征的短期负荷预测模型,成为影响短期负荷预测准确率的关键之所在。为了较好适应季节变化、外部环境因素以及用户行为的变化,提出一种由SLSTM和MLSTM两种架构组成的XLSTM短期负荷预测模型,并利用两种架构的优势捕捉负荷数据中空间和时间的耦合关系,以有效缓解长时间预测后出现数据漂移而导致预测精度下降的问题。通过利用跨季节划分的实际电力系统负荷数据进行单步预测和多步预测仿真,并与独立的 LSTM 和CNN-LSTM 模型进行了对比分析。仿真结果表明, XLSTM 模型在单步预测和多步预测中的精度都明显优于其他模型,验证了其具有较强的模型泛化性与缓解短期负荷预测数据漂移的有效性。

    Abstract:

    Short-term load forecasting plays a critical role in the operation and planning of power systems. Accurate prediction of load variations not only optimizes grid dispatching and enhances grid reliability but also provides decision-makers with scientific evidence to reduce operational costs and improve system efficiency. The development of adaptable short-term load forecasting models has become pivotal to improving prediction accuracy. To address seasonal variations, external environmental factors, and dynamic user behavior, this study proposes the XLSTM model, which integrates SLSTM and MLSTM architectures. The model leverages their complementary strengths to capture spatial-temporal correlations within load data, effectively mitigating prediction accuracy degradation caused by data drift during extended forecasting periods. Simulations using cross-seasonally partitioned real-world power system load data were conducted for both single-step and multi-step forecasting, with comparative analyses against standalone LSTM and CNN-LSTM models. The results demonstrate that XLSTM outperforms other models in both forecasting scenarios, validating its robust generalization capability and effectiveness in alleviating data drift challenges in short-term load forecasting.

    参考文献
    相似文献
    引证文献
引用本文

郁佳杰,付保川,朱建业,韩雅明,,.基于扩展长短期记忆网络的电力系统短期负荷预测计算机测量与控制[J].,2025,33(8):72-78.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-02-25
  • 最后修改日期:2025-03-31
  • 录用日期:2025-04-01
  • 在线发布日期: 2025-09-05
  • 出版日期:
文章二维码