基于改进YOLOv8的化工厂安全装置检测算法
DOI:
CSTR:
作者:
作者单位:

青岛科技大学 信息科学技术学院

作者简介:

通讯作者:

中图分类号:

TP391.4

基金项目:

山东省重点研发计划(科技示范工程)课题(2021SAGC0701);青岛市海洋科技创新专项(22-3-3-hygg-3-hy)。


Factory Safety Device Detection Based on Improved YOLOv8
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对工厂工业安全检测场景安全装置目标检测存在的漏检与误检问题,提出了SAG-YOLOv8改进架构;通过移位卷积替换原C2f模块中的常规卷积构建C2f-SWC新模块以增强多尺度特征表达能力;采用AIFI模块替代传统空间池化金字塔结构来强化图像语义理解能力;引入GFPN网络架构通过增强跨层多尺度交互与同层横向连接促进小目标特征传播;实验数据显示SAG-YOLOv8算法mAP@0.5指标较原始YOLOv8提升了3.4%,精确度和召回率也有一定提升;该方法显著提高了化工厂安全装置中目标检测的精准度和稳定性,为其安全运行提供了有力的技术保障。

    Abstract:

    To address the issues of missed and false detections in industrial safety device target detection within factory environments, the SAG-YOLOv8 improved architecture is proposed. This architecture replaces the conventional convolution in the original C2f module with shifted convolution, forming the new C2f-SWC module to enhance multi-scale feature representation. Additionally, the AIFI module is employed instead of the traditional spatial pyramid pooling structure to strengthen semantic understanding. The GFPN network architecture is introduced to improve small target feature propagation by enhancing cross-layer multi-scale interactions and same-layer lateral connections. Experimental results show that the SAG-YOLOv8 algorithm improves the mAP@0.5 metric by 3.4% compared to the original YOLOv8, with noticeable enhancements in precision and recall. This method significantly enhances the accuracy and stability of safety device target detection in chemical plants, providing strong technical support for safe operations.

    参考文献
    相似文献
    引证文献
引用本文

曹鑫泉,李海涛,张俊虎.基于改进YOLOv8的化工厂安全装置检测算法计算机测量与控制[J].,2026,34(2):57-64.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-02-14
  • 最后修改日期:2025-03-21
  • 录用日期:2025-03-25
  • 在线发布日期: 2026-02-09
  • 出版日期:
文章二维码