重度混合动力汽车分层多模式联合制动协同控制方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    重度混合动力汽车在制动过程中,需要在电机制动和液压制动之间进行快速而平稳的切换,这种切换要求制动系统具有高度的动态响应能力和精确的控制策略。然而,当车辆处于紧急制动状态时,ABS系统也会触发并中断电机制动力,以确保车轮不会抱死,这种干预引发了制动力波动问题。为了在ABS触发后保持制动稳定性,需要设计协同控制策略,以在电机和液压制动之间实现平稳过渡。为此,提出重度混合动力汽车分层多模式联合制动协同控制方法。对重度混合动力汽车车速、轮速以及加速度数据的多传感器数据进行融合处理,根据多传感器融合后的车速、轮速数据计算重度混合动力汽车的车轮滑移率。基于多传感器融合后的加速度数据搭建重度混合动力汽车的纵向动力学方程,利用车轮滑移率与纵向动力学方程计算获得重度混合动力汽车行驶中的路面附着系数。设计不同工况下的重度混合动力汽车联合制动协同控制方法,在ABS触发后完全退出电机制动力的工况下,引入分层控制模式实现制动系统的平稳过渡和协调控制,减少制动力波动问题的发生频率;在ABS触发后减小电机制动力矩至稳态范围的工况下,根据路面附着系数判断ABS激活后电机与液压制动力的分配策略,实现复合制动的协调控制;在ABS触发前退出电机制动力的工况下,根据ABS抱死趋势预测结果动态调整电机制动力与液压制动力分配,确保平稳过渡至合适的制动模式。测试结果表明,在三种工况下,设计方法均能保持较低的制动距离,最高不超过133m,电池SOC回收率均较高,最高达到65%,电机力矩变化均较为平稳,未出现短时较大频繁波动。

    Abstract:

    During the braking process of heavy-duty hybrid vehicles, it is necessary to quickly and smoothly switch between electric motor braking and hydraulic braking, which requires the braking system to have a high degree of dynamic response capability and precise control strategy. However, when the vehicle is in an emergency braking state, the ABS system also triggers and interrupts the motor braking force to ensure that the wheels do not lock up, which causes brake force fluctuations. In order to maintain braking stability after ABS triggering, a collaborative control strategy needs to be designed to achieve a smooth transition between the motor and hydraulic braking. Therefore, a layered multi-mode joint braking cooperative control method is proposed for heavy-duty hybrid electric vehicles. Perform multi-sensor data fusion processing on the speed, wheel speed, and acceleration data of heavy-duty hybrid vehicles, and calculate the wheel slip ratio of heavy-duty hybrid vehicles based on the multi-sensor fused speed and wheel speed data. Build a longitudinal dynamic equation for a heavy-duty hybrid electric vehicle based on multi-sensor fusion acceleration data, and calculate the road adhesion coefficient during driving using wheel slip ratio and longitudinal dynamic equation. Design a joint braking collaborative control method for heavy-duty hybrid electric vehicles under different operating conditions, and introduce a layered control mode to achieve smooth transition and coordinated control of the braking system under the condition of completely exiting the motor braking force after ABS triggering, reducing the frequency of braking force fluctuations; Under the condition of reducing the motor braking torque to the steady-state range after ABS triggering, the distribution strategy of the motor and hydraulic braking force after ABS activation is determined based on the road adhesion coefficient to achieve coordinated control of composite braking; Under the condition of exiting the motor braking force before ABS triggering, dynamically adjust the distribution of motor braking force and hydraulic braking force based on the predicted ABS lock up trend to ensure a smooth transition to the appropriate braking mode. The test results show that under all three operating conditions, the design method can maintain a low braking distance, with a maximum of no more than 133m. The battery SOC recovery rate is high, reaching up to 65%, and the motor torque changes are relatively stable, without short-term large and frequent fluctuations.

    参考文献
    相似文献
    引证文献
引用本文

高聪聪,郭忠庆,蒋渊德.重度混合动力汽车分层多模式联合制动协同控制方法计算机测量与控制[J].,2026,34(2):119-125.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-02-08
  • 最后修改日期:2025-03-20
  • 录用日期:2025-03-21
  • 在线发布日期: 2026-02-09
  • 出版日期:
文章二维码