面向复杂交通环境的多源融合实时语义场景补全算法
DOI:
CSTR:
作者:
作者单位:

1.广州华商职业学院;2.广州华商学院

作者简介:

通讯作者:

中图分类号:

基金项目:

2024年广东省普通高校自然科学类平台和项目(2024ZDZX3035);2024年广州华商学院校级科研课题(GZHSKY2024019);广州华商学院校内导师制科研基金资助项目(2024HSDS12)。


Real-time Semantic Scene Completion Algorithm with Multi-source Fusion for Complex Traffic Environments
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    面向自动驾驶与智慧交通需求,实时且精准地重建车辆周围的三维语义场景对保障交通安全与优化出行效率具有重要意义。针对复杂交通环境中存在多源异质数据以及遮挡严重、光照多变等难题,本文提出一种多源融合实时语义场景补全算法。通过跨模态自注意力策略融合摄像机、激光雷达和毫米波雷达信息,实现对遮挡区域的精确感知与语义推断。利用时空上下文建模在序列数据中捕捉目标动态变化,显著提升场景一致性与补全完整度。实验结果表明,与采用四维稀疏卷积的主流基线方法相比,所提算法在遮挡处理与推理速度上均取得显著优势。

    Abstract:

    Facing the needs of autonomous driving and intelligent transportation, real-time and accurate reconstruction of 3D semantic scenes around vehicles is of great significance for ensuring traffic safety and optimizing travel efficiency. Aiming at the complex traffic environment where there are multiple sources of heterogeneous data, as well as serious occlusion and variable illumination, this paper proposes a multi-source fusion real-time semantic scene complementation algorithm. The cross-modal self-attention strategy fuses camera, LiDAR and millimeter-wave radar information to achieve accurate perception and semantic inference of the occluded region. Spatio-temporal contextual modeling is used to capture the dynamic changes of the target in the sequence data, which significantly improves the scene consistency and completeness of the complementation. Experimental results show that the proposed algorithm achieves significant advantages in both occlusion processing and inference speed compared with mainstream bas

    参考文献
    相似文献
    引证文献
引用本文

林伟烜,叶仕通.面向复杂交通环境的多源融合实时语义场景补全算法计算机测量与控制[J].,2025,33(7):263-271.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-01-25
  • 最后修改日期:2025-03-08
  • 录用日期:2025-03-10
  • 在线发布日期: 2025-07-16
  • 出版日期:
文章二维码