基于双重去噪与ResNet的农业机械故障检测研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

(ZK22-34)


Research on agricultural machinery fault detection based on optimized ResNet model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有农业机械故障检测算法存在的检测率低、不同故障分类精度差等不足,设计了一种基于优化ResNet模型的检测方案。先通过布置高精度传感器动态采集农业机械的工作状态数据集,采用样本熵和小波阈值的双重降噪方案对故障集进行降噪处理,以更好地降低噪声干扰;构建以残差块为核心的ResNet网络模型,并增加BN层提高改进模型数据标准化处理能力,同时提升模型的过拟合控制能力;利用优化的麻雀搜索算法确定模型的最优参数集,显著提升了深度网络的性能,同时引入SVM模型提升模型特征分类能力;在模型的数据输出环节引入Dropout层和支持向量机工具降低模型复杂度,同步提升对多种不同故障的分类精度。实验结果显示,提出故障检测算法模型的降噪能力较强,在训练集和测试集的故障定位精度分别为99.2%和99.1%,同时对不同故障的分类精度也优于传统故障检测算法,消融实验结果验证了优化ResNet网络模型各组成部分的有效性。

    Abstract:

    Aiming at the shortcomings of existing agricultural machinery fault detection algorithms, such as low detection rate and poor classification accuracy of different faults, a detection scheme based on optimized ResNet model was designed. Firstly, high-precision sensors are arranged to collect the working state data set of agricultural machinery dynamically, and the dual denoising scheme of sample entropy and wavelet threshold is adopted to denoise the fault set to reduce the noise interference better. The ResNet network model with residual block as the core is constructed, and BN layer is added to improve the model"s data standardization processing ability and improve the model"s overfitting control ability. The optimized Sparrow search algorithm was used to determine the optimal parameter set of the model, which significantly improved the performance of the deep network, and SVM model was introduced to improve the feature classification ability of the model. The Dropout layer and support vector machine tool are introduced in the data output of the model to reduce the complexity of the model and simultaneously improve the classification accuracy of various faults. The experimental results show that the proposed fault detection algorithm model has strong noise reduction ability, the fault location accuracy in the training set and the test set are 99.2% and 99.1%, respectively, and the classification accuracy of different faults is better than the traditional fault detection algorithm. The ablation experiment results verify the effectiveness of optimizing each component of the ResNet network model.

    参考文献
    相似文献
    引证文献
引用本文

李培东.基于双重去噪与ResNet的农业机械故障检测研究计算机测量与控制[J].,2025,33(7):72-80.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-01-23
  • 最后修改日期:2025-03-03
  • 录用日期:2025-03-06
  • 在线发布日期: 2025-07-16
  • 出版日期:
文章二维码