基于改进YOLOv8n的电力设备表面缺陷检测研究
DOI:
CSTR:
作者:
作者单位:

1.国网天津市电力公司城南供电分公司;2.华北电力大学计算机系

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:

国网天津市电力公司科技项目


Defect detection algorithm for substation equipment based on improved YOLOv8n
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对当前电力设备缺陷检测存在图像背景复杂、检测精确度低和识别效果差等问题,提出一种基于改进YOLOv8n的电力设备表面缺陷检测方法。该方法在C2f模块中引入SaE注意力机制,增强主干网络对关键缺陷特征提取能力;在颈部网络采用BiFPN优化特征融合层,实现特征的跨尺度融合,提升了模型多尺度缺陷检测性能;设计融合MSDA注意力机制的M-Detect检测头,强化模型对目标定位的精度;使用WIoU作为损失函数,提升模型对困难样本的检测性能。实验结果表明,改进后模型的mAP达到83.8%,较原始YOLOv8n模型提升1.7%,且满足实时检测要求,证实了该方法在电力设备表面缺陷检测的有效性。

    Abstract:

    Aiming at the current problems of defect detection in power equipment, such as complex image background, low detection accuracy and poor recognition effect, a surface defect detection method for power equipment based on improved YOLOv8n is proposed. The method introduces the SaE attention mechanism in the C2f module to enhance the backbone network's ability to extract key defect features; optimizes the feature fusion layer using BiFPN in the neck network to achieve cross-scale fusion of features, which improves the model's performance of multi-scale defect detection; designs the M-Detect detection head incorporating the MSDA attention mechanism to strengthen the model's accuracy of target localization; and uses WIoU as a loss function to improve the model's detection performance for difficult samples. The experimental results show that the mAP of the improved model reaches 83.8%, which is 1.7% higher than that of the original YOLOv8n model, and meets the real-time detection requirements, which confirms the effectiveness of the method in the detection of surface defects on power equipment.

    参考文献
    相似文献
    引证文献
引用本文

李金顺,骆斌,吴抒源,孙雪,张革,张铎瀚,王浩宇.基于改进YOLOv8n的电力设备表面缺陷检测研究计算机测量与控制[J].,2026,34(2):39-45.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-01-22
  • 最后修改日期:2025-03-07
  • 录用日期:2025-03-10
  • 在线发布日期: 2026-02-09
  • 出版日期:
文章二维码