DAF-YOLO:改进YOLOv8s的轻量化水下目标检测算法
DOI:
CSTR:
作者:
作者单位:

青岛科技大学 信息科学技术学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金青年项目(32301702)


DAF-YOLO: A Lightweight Underwater Target Detection Algorithm to Improve YOLOv8s
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    水下图像由于海洋环境复杂、干扰物多等因素影响,导致现有的水下目标检测算法往往面临检测精度低、误检和漏检的问题。此外,水下目标检测模型复杂,而勘探设备内存有限,部署成本高,实时检测性能差。为解决这些问题,提出了一种基于改进YOLOv8s轻量级水下目标检测算法DAF-YOLO。该算法对YOLOv8s的主干网络进行了改进,设计了一种改进的C2f模块D2F,增强了特征表征能力,更好地捕捉复杂细节并处理形变,解决检测中的误检和漏检问题。同时,针对颈部特征融合网络中非邻近层融合时的语义差距和信息冲突,使用渐进特征金字塔网络AFPN来支持非邻近层的直接交互,实现多尺度特征的充分融合,提升模型的特征融合能力,从而提高目标检测精度。为了减轻颈部网络的计算负担,还引入了FasterNet中的PConv新型卷积方式,降低了参数量和计算量,实现了颈部网络的轻量化,优化提升了模型的检测速度。实验测试表明,该模型在URPC2020数据集上的准确率提高了3.9%,同时以每秒115.6帧的速度实现了高速检测。此外,模型的参数和计算量也显著降低,分别减少了10.52%和10.91%,进一步实现了算法在精度和速度的平衡。

    Abstract:

    Underwater images are affected by factors such as complex marine environments and many interfering objects, leading to the fact that existing underwater target detection algorithms often face problems of low detection accuracy, false detections and missed detections. In addition, the underwater target detection model is complex, while the exploration equipment has limited memory, high deployment cost and poor real-time detection performance. To solve these problems, a lightweight underwater target detection algorithm DAF-YOLO based on improved YOLOv8s is proposed.The algorithm improves the backbone network of YOLOv8s, and designs an improved C2f module D2F, which enhances the feature characterisation capability, better captures complex details and handles deformations, and solves the problem of misdetections and miss-detections in detection. Meanwhile, to address the semantic gap and information conflict when fusing non-neighbouring layers in the neck feature fusion network, an asymptotic feature pyramid network, AFPN, is used to support the direct interaction of non-neighbouring layers, to achieve the full fusion of multi-scale features, and to enhance the feature fusion capability of the model so as to improve the target detection accuracy. In order to reduce the computational burden of the neck network, a novel convolutional approach of PConv in FasterNet is also introduced, which reduces the number of parameters and the computational volume, achieves the lightweight of the neck network, and optimally improves the detection speed of the model. Experimental tests show that the model achieves a 3.9% improvement in accuracy on the URPC2020 dataset, while achieving high-speed detection at 115.6 frames per second. In addition, the parameters and computation of the model are significantly reduced by 10.52% and 10.91%, respectively, which further achieves the balance between accuracy and speed of the algorithm.

    参考文献
    相似文献
    引证文献
引用本文

刘儒一,刘自超,孙媛媛,宋廷强. DAF-YOLO:改进YOLOv8s的轻量化水下目标检测算法计算机测量与控制[J].,2026,34(2):31-38.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-01-20
  • 最后修改日期:2025-02-26
  • 录用日期:2025-02-27
  • 在线发布日期: 2026-02-09
  • 出版日期:
文章二维码