基于改进YOLOv5s的弱电板卡表面缺陷检测方法
DOI:
CSTR:
作者:
作者单位:

1.中车青岛四方机车车辆股份有限公司;2.中国电子科技集团公司第三十三研究所

作者简介:

通讯作者:

中图分类号:

TP391????????????? ?????????????

基金项目:


Surface defect detection method of low-voltage circuit boards based on improved YOLOv5s
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统弱电板卡表面缺陷检测方法效率低、精度差且对元器件的外观缺陷检测能力不足等问题,对YOLOv5s算法进行了技术改进研究。引入CBAM注意力机制强化了对板卡关键特征的提取能力,结合CotNet模块提升了模型小目标检测的能力,采用动态检测头实现多尺度目标自适应检测,并利用SIoU损失函数优化了模型的收敛速度和检测精度,更好地处理了目标框的回归问题;经实验测试,改进算法在实验室自制的板卡数据集上的准确率达到95.7%,相比原算法,mAP50与mAP50:95分别提升了4.3%与2.5%,有效提升了弱电板卡元器件表面缺陷检测的准确性和可靠性,对未来电路板元器件的表面缺陷检测研究具有一定参考价值。

    Abstract:

    To address the issues of low efficiency, poor accuracy, and insufficient capability in detecting component appearance defects in traditional surface defect detection methods for low-voltage boards, technical improvements were made to the YOLOv5s algorithm. The CBAM attention mechanism was introduced to enhance the extraction of key board features. The CotNet module was integrated to improve small target detection capability. A dynamic detection head was adopted to achieve adaptive multi-scale target detection. The SIoU loss function was utilized to optimize model convergence speed, detection accuracy, and bounding box regression. Experimental results showed that the improved algorithm achieved an accuracy of 95.7% on a custom board dataset, with mAP50 and mAP50:95 improved by 4.3% and 2.5% respectively compared to the original algorithm. This method effectively enhances the accuracy and reliability of surface defect detection for low-voltage board components and provides valuable insights for future research on printed circuit board component defect detection.

    参考文献
    相似文献
    引证文献
引用本文

刘真,宋凯,刘磊,鞠军燕.基于改进YOLOv5s的弱电板卡表面缺陷检测方法计算机测量与控制[J].,2025,33(7):81-89.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-01-15
  • 最后修改日期:2025-02-26
  • 录用日期:2025-02-27
  • 在线发布日期: 2025-07-16
  • 出版日期:
文章二维码