基于级联注意力特征融合的门控TCN软测量方法
DOI:
CSTR:
作者:
作者单位:

江南大学

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划(2022YFC3401302),中国博士后科学基金(2021M691276)


Gated TCN with Cascaded Attentional Feature Fusion for Soft Sensor Modeling
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统TCN模型在工业过程动态建模中容易忽略时间序列连续性和局部依赖关系的问题,研究并提出了一种动态软测量模型CAFF-GTCN;通过设计一种新的级联注意力特征融合模块改进TCN中的残差连接,利用自注意力机制和多尺度通道注意力机制对不同感受野提取的特征进行融合,保证模型不会丢失重要信息;同时利用门控机制改进扩张因果卷积,并结合SELU函数增强特征提取能力;实验结果表明,所提方法显著提升了预测精度:在青霉素发酵仿真实验中,相较于传统TCN模型,CAFF-GTCN模型的RMSE和MAE分别降低了45.1%和49.4%,R2从0.992 3提升至0.998 9;在硫回收过程实验中,CAFF-GTCN模型的RMSE和MAE分别降低了38.2%和42.7%,R2从0.750 3提升至0.846 4;实验结果验证了所提方法在动态特征提取和预测精度方面的有效性和优越性。

    Abstract:

    Aiming at the problem that traditional TCN models in industrial process dynamic modeling tend to ignore the continuity of time series and local dependencies, a dynamic soft-sensing model called CAFF-GTCN is proposed. A novel cascaded attentional feature fusion module is designed to improve the residual connections, which utilizes self-attention mechanisms and multi-scale channel attention mechanisms to fuse features extracted from different receptive fields, avoiding the loss of important information. Meanwhile, a gating mechanism is introduced to modify the dilated causal convolution, combined with the SELU function, to enhance the ability to extract dynamic features. Experimental results show that the proposed method significantly improves prediction accuracy: in the penicillin fermentation simulation experiment, compared to the traditional TCN model, the CAFF-GTCN model reduce RMSE and MAE by 45.1% and 49.4%, respectively, while increasing R2 from 0.992 3 to 0.998 9. In the sulfur recovery process experiment, the CAFF-GTCN model reduce RMSE and MAE by 38.2% and 42.7%, respectively, while increasing R2 from 0.750 3 to 0.846 4. The experimental results verify the effectiveness and superiority of the proposed method in dynamic feature extraction and prediction accuracy.

    参考文献
    相似文献
    引证文献
引用本文

孙乐,曹余庆,谢莉.基于级联注意力特征融合的门控TCN软测量方法计算机测量与控制[J].,2026,34(2):23-30.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-01-13
  • 最后修改日期:2025-03-02
  • 录用日期:2025-03-03
  • 在线发布日期: 2026-02-09
  • 出版日期:
文章二维码