混合多策略改进蜣螂算法的空间柔性机械臂视觉反馈稳态控制系统设计
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    空间柔性机械臂在操作任务过程中抓握质量摄动,导致动力学模型的受力和变形相关参数发生变化,使动力学模型充满不确定性,进而引起机械臂运行位置出现偏差,控制参数求解易陷入局部最优,严重影响控制精度。为此,提出基于混合多策略改进蜣螂算法的空间柔性机械臂视觉反馈稳态控制系统。硬件方面,设计视觉传感器、运动控制卡和伺服电机驱动器。软件方面,考虑柔性体的动能、弹性力和广义力,建立空间柔性机械臂动力学模型,反映机械臂在运动过程中的受力情况和变形特性,作为稳态控制的依据。借助视觉传感器采集的大量图像,获取图像视觉反馈信息和位置视觉反馈信息,基于此求出机械臂运动产生的特征误差和位置误差,完成机械臂运动状态跟踪。搭建机械臂视觉反馈稳态控制框架,将运动状态跟踪结果输入其中推导出稳态控制律,并使其作用于动力学模型,完成稳态控制处理。运用结合混沌映射策略和人工水母搜索算法的混合多策略改进蜣螂算法,对稳态控制增益参数进行整定,以便系统取得更优的稳态控制结果。测试结果表明:运用该系统完成稳态控制处理后,空间柔性机械臂运动姿态误差保持在±0.2°以内,证明了系统良好的控制性能。

    Abstract:

    The spatial flexible robotic arm grasps mass perturbations during the operation task, causing changes in the force and deformation related parameters of the dynamic model, making the dynamic model full of uncertainty, and thus causing deviations in the operating position of the robotic arm. The solution of control parameters is prone to getting stuck in local optima, seriously affecting control accuracy. Therefore, a spatial flexible robotic arm visual feedback steady-state control system based on hybrid multi strategy improved beetle algorithm is proposed. In terms of hardware, design visual sensors, motion control cards, and servo motor drivers. In terms of software, considering the kinetic energy, elastic force, and generalized force of flexible bodies, a spatial flexible robotic arm dynamic model is established to reflect the force situation and deformation characteristics of the robotic arm during motion, as the basis for steady-state control. By using a large number of images collected by visual sensors, image visual feedback information and position visual feedback information are obtained. Based on this, the feature error and position error generated by the motion of the robotic arm are calculated, and the motion state tracking of the robotic arm is completed. Build a visual feedback steady-state control framework for a robotic arm, input the motion state tracking results into it to derive the steady-state control law, and apply it to the dynamic model to complete the steady-state control processing. Using a hybrid multi strategy approach that combines chaos mapping strategy and artificial jellyfish search algorithm to improve the beetle algorithm, the steady-state control gain parameters are tuned to achieve better steady-state control results for the system. The test results show that after using the system to complete steady-state control processing, the motion attitude error of the space flexible robotic arm remains within ± 0.2 °, proving the good control performance of the system.

    参考文献
    相似文献
    引证文献
引用本文

高强.混合多策略改进蜣螂算法的空间柔性机械臂视觉反馈稳态控制系统设计计算机测量与控制[J].,2025,33(10):127-134.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-01-06
  • 最后修改日期:2025-02-20
  • 录用日期:2025-02-20
  • 在线发布日期: 2025-10-27
  • 出版日期:
文章二维码