基于改进布谷鸟算法的LPI雷达信号无源定位
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在电子对抗环境中,雷达信号传播复杂,在定位中容易受到初始值和局部极值的影响,易陷入局部最优解,得到不准确的定位结果,导致LPI雷达信号定位精度受限,定位误差较大。为此利用改进布谷鸟算法优化设计LPI雷达信号无源定位方法。考虑LPI雷达信号的产生与传播环境,接收雷达信号,从空间维度提取雷达信号特征,根据接收信号与LPI雷达信号之间的特征匹配度,分选出接收雷达信号的LPI雷达信号部分。通过发射功率调整、时间滤波,完成LPI雷达信号的增强与干扰抑制处理。以处理后的LPI雷达信号为处理对象,生成信号波束,推导出波束方向。沿推导出的波束方向,根据雷达信号的传输速度,得出信号定位初始值。将定位初始值输入到改进布谷鸟算法中,选择拉丁超立方抽样方式生成布谷鸟初始样本,以更全面地覆盖搜索空间,令每一个布谷鸟个体为一个定位误差,采用Levy飞行机制进行全局搜索,通过调整步长因子,提高全局搜索能力,利用模拟退火机制确定布谷鸟位置更新结果被接受的概率,避免布谷鸟搜索陷入局部最优,保留被接受且适应度最大值对应位置,作为改进布谷鸟算法的最优解,以此作为初始定位误差,在定位初始值基础上调整定位值,得出LPI雷达信号的无源精准定位结果。通过性能测试实验得出结论:在正常和电子对抗环境中,与传统定位方法相比,优化设计方法的定位误差和定位离散度均得到明显降低。

    Abstract:

    In the electronic warfare environment, radar signal propagation is complex, and it is easily affected by initial values and local extremum in positioning, which can lead to getting stuck in local optimal solutions and obtaining inaccurate positioning results, resulting in limited positioning accuracy and large positioning errors of LPI radar signals. To this end, an improved cuckoo algorithm is utilized to optimize the design of passive location methods for LPI radar signals. Considering the generation and propagation environment of LPI radar signals, receiving radar signals, extracting radar signal features from spatial dimensions, and sorting out the LPI radar signal part of the received radar signal based on the feature matching degree between the received signal and the LPI radar signal. By adjusting the transmission power and filtering the time, the enhancement and interference suppression of LPI radar signals are completed. Using the processed LPI radar signal as the processing object, generate a signal beam and derive the beam direction. Obtain the initial signal positioning value based on the transmission speed of the radar signal along the derived beam direction. Input the initial positioning value into the improved cuckoo algorithm, select the Latin hypercube sampling method to generate cuckoo initial samples, in order to cover the search space more comprehensively and make each cuckoo individual a positioning error. Use the Levy flight mechanism for global search, adjust the step size factor to improve the global search ability, and use the simulated annealing mechanism to determine the probability of cuckoo position update results being accepted, avoiding cuckoo search falling into local optima. Retain the position corresponding to the accepted and maximum fitness value as the optimal solution of the improved cuckoo algorithm, and use it as the initial positioning error. Adjust the positioning value based on the initial positioning value to obtain the passive accurate positioning result of LPI radar signal. The conclusion drawn from performance testing experiments is that, in both normal and electronic warfare environments, the optimized design method significantly reduces the positioning error and dispersion compared to traditional positioning methods.

    参考文献
    相似文献
    引证文献
引用本文

夏韶俊,牛勤.基于改进布谷鸟算法的LPI雷达信号无源定位计算机测量与控制[J].,2025,33(8):274-282.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-30
  • 最后修改日期:2025-02-19
  • 录用日期:2025-02-20
  • 在线发布日期: 2025-09-05
  • 出版日期:
文章二维码