基于时变隐马尔科夫模型的SCADA数据异常状态智能判定方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家级自然科学项目基金:0710FD221054080


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    风电机组实际运行情况复杂,由于其工况随风速时变,户外恶劣环境导致机组各部件故障率高及人为限电等因素,风电机组SCADA系统实测运行数据中包含一定比例的异常数据,且异常类型复杂。如果用原始数据进行数据异常状态分析会导致分析结果产生很大偏差,导致SCADA数据异常状态精度下降,为此为此提出了基于时变隐马尔科夫模型的SCADA数据异常状态智能判定方法。使用滑动窗口技术与数据增广状态矩阵对于SCADA数据进行平滑处理后得到去噪数据,为后续的数据异常状态智能判定提供高质量的数据。根据去噪后数据的特征进行数据分类处理。利用时变隐马尔科夫模型对比正常数据属性和分类后子数据集属性,若是二者一致则说明数据状态正常,若是不一致则说明数据异常,从而实现SCADA数据异常状态智能判定。实验结果表明,该方法方法可以精准判定SCADA数据异常状态,可以确保SCADA系统的安全稳定运行。

    Abstract:

    The actual operation of wind turbines is complex. Due to the time-varying wind speed, harsh outdoor environments, high failure rates of various components, and human power restrictions, the SCADA system of wind turbines contains a certain proportion of abnormal data in the measured operation data, and the types of abnormalities are complex. If raw data is used for data abnormal state analysis, it will cause significant deviation in the analysis results, leading to a decrease in the accuracy of SCADA data abnormal states. Therefore, an intelligent judgment method for SCADA data abnormal states based on time-varying hidden Markov models is proposed. Using sliding window technology and data augmentation state matrix to smooth SCADA data and obtain denoised data, providing high-quality data for intelligent determination of abnormal data states in the future. Classify and process data based on the features of denoised data. Using a time-varying hidden Markov model to compare the attributes of normal data and the attributes of classified sub datasets, if they are consistent, it indicates that the data state is normal; if they are inconsistent, it indicates that the data is abnormal, thus achieving intelligent judgment of SCADA data abnormal states. The experimental results show that this method can accurately determine the abnormal state of SCADA data and ensure the safe and stable operation of the SCADA system.

    参考文献
    相似文献
    引证文献
引用本文

陈秀康.基于时变隐马尔科夫模型的SCADA数据异常状态智能判定方法计算机测量与控制[J].,2025,33(7):243-251.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-24
  • 最后修改日期:2025-02-11
  • 录用日期:2025-02-12
  • 在线发布日期: 2025-07-16
  • 出版日期:
文章二维码