基于改进YOLOv7的城市街景行人检测
DOI:
CSTR:
作者:
作者单位:

东华理工大学测绘与空间信息工程学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学(41701437);核资源与环境国家重点实验室项目(2020NRE17);江西省自然科学基金(20232BAB213054)


Pedestrian Detection in Urban Street View Based on Improved YOLOv7WANG Jianhua 1,2, LIU Dan1,2,3 *,ZHOU Keyi 3,WANG Yutao 3
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对当前城市街景行人检测方法存在高漏检率和低检测精度的问题,提出一种改进YOLOv7的城市街景行人检测算法。该方法融合CA注意力机制与SE网络,设计了CA-SENet注意力机制,以增强网络对行人的注意力,提升模型对行人的检测精度;引入改进的空洞空间金字塔池化模块,并将其嵌入骨干网络与特征增强网络的连接处,以捕获影像多尺度特征,降低模型的漏检率;利用Wise-IoU损失函数替代原有的CIoU,以优化锚框的质量评估。经过在公开数据集和自制行人数据集上对算法进行实验,结果表明,改进YOLOv7模型能够更有效地检测出行人目标。

    Abstract:

    Aiming at the problems of high missed detection rate and low detection accuracy in current urban street scene pedestrian detection methods, an improved YOLOv7 urban street scene pedestrian detection algorithm was proposed. This method integrates the CA attention mechanism and the SE network to design the CA-SENet attention mechanism to enhance the network's attention to pedestrians and improve the model's detection accuracy for pedestrians. An improved atrous spatial pyramid pooling module is introduced and embedded in the connection between the backbone network and the feature enhancement network to capture multi-scale features of the image and reduce the missed detection rate of the model. The Wise-IoU loss function is used to replace the original CIoU to optimize the quality evaluation of the anchor box. After experimenting with the algorithm on public datasets and self-made pedestrian datasets, the results show that the improved YOLOv7 model can detect pedestrian targets more effectively.

    参考文献
    相似文献
    引证文献
引用本文

王建华,刘丹,王瑜涛,周克毅.基于改进YOLOv7的城市街景行人检测计算机测量与控制[J].,2026,34(2):158-166.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-23
  • 最后修改日期:2025-02-17
  • 录用日期:2025-02-17
  • 在线发布日期: 2026-02-09
  • 出版日期:
文章二维码