基于MV/PV的阀门流量特性训练与内漏在线监测
DOI:
CSTR:
作者:
作者单位:

中国石油大学(北京)

作者简介:

通讯作者:

中图分类号:

基金项目:


Valve Flow Characteristics Training and Internal Leakage Online Monitoring Based on MV/PV

Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对阀门内漏数据具有较强的隐蔽性,传统检测手段常难以奏效的问题,提出了一种基于数据驱动的阀门内漏故障诊断方法。采用数据驱动技术,通过多项式拟合历史阀门开度与相对流量数据,构建阀门实际工作流量特性曲线模型,并结合专家知识量化阀门内漏程度。提出了基于MV/PV数据的非侵入式内漏诊断方法,并开发了相关应用软件。实际应用于某炼化厂连续重整装置,实现了阀门内漏的实时监测与分级报警。

    Abstract:

    Aiming at the problem that valve internal leakage data is highly hidden and traditional detection means are often difficult to be effective, a data-driven valve internal leakage fault diagnosis method is proposed. Data-driven technology is used to construct a valve actual operating flow characteristic curve model by polynomial fitting historical valve opening and relative flow data and quantify the degree of valve internal leakage by combining expert knowledge. A internal leakage diagnosis method based on MV/PV data is innovatively proposed, and related application software is developed. It is practically applied in a continuous reforming unit of a refinery, realizing real-time monitoring and graded alarm of valve internal leakage.

    参考文献
    相似文献
    引证文献
引用本文

王珠,李惠欣,肖枝敏.基于MV/PV的阀门流量特性训练与内漏在线监测计算机测量与控制[J].,2026,34(2):16-22.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-19
  • 最后修改日期:2025-02-19
  • 录用日期:2025-02-20
  • 在线发布日期: 2026-02-09
  • 出版日期:
文章二维码