数字孪生驱动的船用柴油发动机多工况故障诊断研究
DOI:
CSTR:
作者:
作者单位:

青岛科技大学信息科学技术学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(62201314)


Research on Multi condition Fault Diagnosis of Marine Diesel Engines Driven by Digital Twins
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于数字孪生的船用柴油发动机故障诊断技术能够通过虚拟仿真和实时数据融合实现设备状态的精准预测和高效维护;针对物理空间与虚拟空间之间的信息鸿沟以及孪生故障模式有限,导致诊断模型难以直接应用于实际工业环境且难以识别未知故障的问题,提出了一种基于动态三元组对抗增强和自适应选择性的多工况船用柴油发动机故障诊断方法;构建了船用柴油发动机数字孪生模型,获取不同运行状态下的孪生数据;设计了一种基于动态三元组对抗联合损失的数据增强方法,弥补孪生数据与物理空间数据间的分布差异以提高孪生数据的质量;设计了基于自适应权重的选择性域自适应方法,在无先验信息的情况下识别不同工况下已知故障及未知故障模式;建立了船用柴油发动机数字孪生系统,基于实时运行数据实现柴油发动机的精准管控及虚实同步;实验结果表明,所提方法有效提升了故障诊断的准确性和未知故障的识别能力,验证了所提框架的可行性和工程应用价值。

    Abstract:

    A marine diesel engine fault diagnosis technology based on digital twin enables precise prediction and efficient maintenance of equipment status through virtual simulation and real-time data fusion. To address the information gap between physical and virtual spaces and the limited fault modes of the twin, which hinder the direct application of diagnostic models in industrial environments and the identification of unknown faults, this paper proposes a multi-condition fault diagnosis method for marine diesel engines based on dynamic triplet adversarial enhancement and adaptive selectivity. A digital twin model of the marine diesel engine is constructed to obtain twin data under different operating conditions. A data augmentation method based on dynamic triplet adversarial joint loss is designed to mitigate distribution discrepancies between twin data and physical space data, thereby enhancing the quality of the twin data. Additionally, a selective domain adaptation method based on adaptive weights is developed to identify known and unknown fault modes under various conditions without prior information. A marine diesel engine digital twin system is established to achieve precise engine control and virtual-real synchronization based on real-time operational data. Experimental results demonstrate that the proposed method significantly improves fault diagnosis accuracy and enhances the recognition of unknown faults, verifying the feasibility and engineering value of the proposed framework.

    参考文献
    相似文献
    引证文献
引用本文

马杰,刘扬,辛鑫,付雨桐,杨晓祺,靳子儒,黄晓通,赵振.数字孪生驱动的船用柴油发动机多工况故障诊断研究计算机测量与控制[J].,2025,33(12):1-12.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-21
  • 最后修改日期:2024-12-27
  • 录用日期:2025-01-02
  • 在线发布日期: 2025-12-24
  • 出版日期:
文章二维码